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PAC-Bayes Publications

Number of search results per year for “PAC-Bayes(ian)” keywords on Google Scholar.
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What is PAC-Bayes?

A statistical learning theory

A frequentist approach with a Bayesian twist (notions of prior and posterior).

A generic framework to (re)think generalisation of machine learning algorithms.

PAC-Bayes Theorems

High-confidence bounds on the generalization loss of a predictor/model obtained from its
performance on the training sample.

PAC-Bayes bounds are safety checks; numerical certificates!

PAC-Bayes Algorithms

Optimizing the PAC-Bayes bounds lead to self-certified learning algorithms.

Numerous existing learning algorithms can be cast as PAC-Bayes ones, ...

... and new algorithms can be conceived this way!
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Why PAC-Bayes?

PAC-Bayes is modular:

Choose your own predictor/model, loss, data assumptions, etc.

PAC-Bayes is inclusive:

Reconciliates Frequentists and Bayesians
Bridges machine learning and information theory
Welcomes both modeling cultures: data modeling and algorithmic modeling (Breiman 2001)
Offers a playground for those developing equations and those running experiments.
Adapts to many existing learning approaches, from boosting to deep neural networks

Plus:

The proofs are (relatively) simple
The bounds can be tight (numerically non-vacuous)
Deriving self-certified learning algorithms is a noble and fun journey!
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Historical landmarks

Pre-history: PAC analysis of Bayesian estimators (Shawe-Taylor and Williamson 1997)

Birth: First PAC-Bayesian theorems (McAllester 1998, 1999)

Empirical bounds

PAC-Bayes kl bound (Langford and Seeger 2001)
Neural Networks (Langford and Caruana 2001)
SVM & Margins (Langford and Shawe-Taylor 2002)

Oracle bounds

PAC-Bayes tempered bound,
localized prior, link with
mutual information, . . .

(Catoni 2003, 2004, 2007)

Self-certified learning algorithms

“PAC-Bayesian learning of linear classifiers”
(Germain, Lacasse, Laviolette, and Marchand 2009)

“Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks...”
(Dziugaite and D. M. Roy 2017)

“Tighter Risk Certificates for Neural Networks”
(Pérez-Ortiz et al. 2021)
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Machine Learning: The Prediction Problem (non-interactive setting)
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Definitions

A learning example z := (x , y) ∈ Z is a description-label pair.

Data generating distribution

Each example is an observation from distribution D on Z.

Learning sample

S := { z1, z2, . . . , zn } ∼ Dn

Predictors (or hypothesis)

h : X → Y, h ∈ H
Learning algorithm

A(S) −→ h

Loss function

ℓ : H×Z → R

Empirical loss

L̂S(h)=
1

n

n∑
i=1

ℓ(h, zi )

Generalization loss

LD(h)= E
z∼D

ℓ(h, z)
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The Generalization Challenge

Goal: Minimize the generalization loss on D

LD(h) = E
z∼D

ℓ(h, z)

The learning algorithm see only the empirical loss on S :

L̂S(h) =
1

n

n∑
i=1

ℓ(h, zi )
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PAC (without Bayes) Learning

PAC guarantees (Probably Approximately Correct)

With probability at least “ 1−δ ”, the loss of predictor h is less than “ ε ”

Pr
S∼Dn

(((
LD(h) ≤≤≤ ε(L̂S(h), n, δ, . . .)

)))
≥ 1−δ

Single hypothesis h (building block):

LD(h) ≤ L̂S(h) +
√

1
2n log

(
1
δ

)
.

Finite function class H (worst-case approach):

∀h ∈ H, LD(h) ≤ L̂S(h) +

√
1
2n log

(
|H|
δ

)
Structural risk minimisation; hypotheses hi associated with prior weight pi :

∀hi ∈ H, LD(hi ) ≤ L̂S(hi ) +

√
1
2n log

(
1
piδ

)
Uncountably infinite function class: VC dimension, Rademacher complexity...
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PAC-Bayesian Learning

Classical PAC approaches are suited to analyze the performance of individual functions,
−→ Extension: PAC-Bayes allows to consider distributions over hypotheses.

It tastes Bayesian...

Given a prior distribution P on H and a posterior distribution Q on H..

Pr
S∼Dn

(((
E

h∼Q
LD(h) ≤≤≤ ε( E

h∼Q
L̂S(h), n, δ,P, . . .)

)))
≥ 1−δ

... but it’s not!

Prior
• PAC-Bayes: bounds hold for any prior distribution
• Bayes: prior choice impacts inference

Posterior
• PAC-Bayes: bounds hold for any posterior distribution
• Bayes: posterior uniquely defined by prior and

likelihood

Data
• PAC-Bayes: observations

come from an unknown data
distribution (iid assumption)

• Bayes: observations are
generated by a model from a
specified family
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PAC-Bayes bounds vs. Bayesian inference
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A Classical PAC-Bayesian Theorem

PAC-Bayesian theorem (adapted from McAllester 1999, 2003)

For any distribution D on X × Y, for any set of predictors H, for any loss ℓ : H×X × Y → [0, 1], for
any distribution P on H, for any δ∈(0, 1], we have,

Pr
S∼Dn

(((
∀Q on H : E

h∼Q
LD(h) ≤≤≤ E

h∼Q̂
LS(h) +

√
1
2n

[
KL(Q∥P) + ln 2

√
n

δ

])))
≥ 1−δ ,

where KL(Q∥P) = E
h∼Q

ln Q(h)
P(h) is the Kullback-Leibler divergence.

Training bound

Gives generalization guarantees not based on testing sample.

Valid for all posterior Q on H
Inspiration for conceiving new learning algorithms as we can optimise for Q.
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One can predict with...

The “Maximum-A-Posteriori (MAP)” predictor:

MAPQ(x) = h∗ with h∗ = argmax
h

(Q(h)).

The (so-called) “Bayes” majority vote predictor (classification only):

BQ(x) = max
y∈Y

[∫
H
Q(h)I [h(x) = y ]dh

]
with h ∼ Q.

The (so-called) “Gibbs” stochastic predictor:

GQ(x) = h(x) with h ∼ Q.

The “Aggregated” predictor :

HQ(x) =

∫
H
Q(h)dh.
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A General PAC-Bayesian Theorem

∆-function: “distance” between E
h∼Q̂

LS(h) and E
h∼Q

LD(h)

Convex function ∆ : [0, 1]× [0, 1] → R.

General theorem (Bégin et al. 2014, 2016; Germain 2015)

For any distribution D on X × Y, for any set H of voters, for any loss ℓ : H×X × Y → [0, 1], for any

distribution P on H, for any δ∈(0, 1], and for any ∆-function, we have, with probability at least 1−δ

over the choice of S ∼ Dn,

∀Q on H : ∆
(

E
h∼Q̂

LS(h), E
h∼Q

LD(h)
)

≤ 1

n

[
KL(Q∥P) + ln

I∆(n)
δ

]
,

where I∆(n) = E
h∼P

E
S ′∼Dn

en·∆(L̂S′ (h),LD(h))
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General theorem

Pr
S∼Dn

(
∀Q on H : ∆

(
E

h∼Q̂
LS(h), E

h∼Q
LD(h)

)
≤≤≤ 1

n

[
KL(Q∥P) + ln

I∆(n)

δ

])
≥ 1−δ .

Interpretation.

Pascal Germain PAC-Bayesian Learning: A tutorial 17 / 31



General theorem

Pr
S∼Dn

(
∀Q on H : ∆

(
E

h∼Q̂
LS(h), E

h∼Q
LD(h)

)
≤≤≤ 1

n

[
KL(Q∥P) + ln

I∆(n)
δ

])
≥ 1−δ .

Proof ideas.

Change of Measure Inequality (Donsker and Varadhan 1975; Csiszár 1975)

For any measurable function ϕ : H → R, we have

E
h∼Q

ϕ(h) ≤ KL(Q∥P) + ln

(
E

h∼P
eϕ(h)

)
.

Markov’s inequality

Pr
(
X ≤ EX

δ

)
≥≥≥ 1−δ ≡≡≡ X ≤≤≤ 1−δ

EX
δ .

See also the Exponential Stochastic Inequality ⊴δ

(proposed by Grünwald et al. 2023).
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General theorem

Pr
S∼Dn

(
∀Q on H : ∆

(
E

h∼Q̂
LS(h), E

h∼Q
LD(h)

)
≤≤≤ 1

n

[
KL(Q∥P) + ln

I∆(n)

δ

])
≥ 1−δ .

Proof.

n ·∆
(

E
h∼Q

L̂S(h), E
h∼Q

LD(h)
)

Jensen’s Inequality ≤ E
h∼Q

n ·∆
(
L̂S(h),LD(h)

)
Change of measure ≤ KL(Q∥P)+ ln E

h∼P
en∆
(
L̂S (h),LD (h)

)
Markov’s Inequality ≤≤≤ 1−δ KL(Q∥P)+ ln

1

δ
E

S′∼Dn
E

h∼P
en·∆(L̂S′ (h),LD (h))

Expectation swap = KL(Q∥P)+ ln
1

δ
E

h∼P
E

S′∼Dn
en·∆(L̂S′ (h),LD (h))

= KL(Q∥P)+ ln
1

δ
I∆(n) .
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The linear case ∆λ(q, p) :=
λ
n(p − q) (Alquier et al. 2016)

If the loss is bounded; ∀h, z : ℓ(h, z) ∈ [0, b] :

I∆(n) = E
h∼P

E
S ′∼Dn

eλ·(LD(h)−L̂S′ (h)) ≤≤≤
(Hoeffding)

E
h∼P

e
λ2b2

2n = e
λ2b2

2n

Pr
S∼Dn

(
∀Q on H : E

h∼Q
LD(h) ≤≤≤ E

h∼Q̂
LS(h) +

1

λ

[
KL(Q∥P) + λ2b2

2n
+ ln

1

δ

])
≥ 1−δ .

If the loss is sub-Gaussian; ∀h, λ : Ez e
λ(ℓ(h,z)−LD(h)) ≤ e

λ2σ2

2n :

I∆(n) = E
h∼P

E
S ′∼Dn

eλ·(LD(h)−L̂S′ (h)) ≤≤≤ E
h∼P

e
λ2σ2

2n = e
λ2σ2

2n

Pr
S∼Dn

(
∀Q on H : E

h∼Q
LD(h) ≤≤≤ E

h∼Q̂
LS(h) +

1

λ

[
KL(Q∥P) + λ2σ2

2n
+ ln

1

δ

])
≥ 1−δ .
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The linear case ∆λ(q, p) :=
λ
n(p − q)

Pr
S∼Dn

(
∀Q on H : E

h∼Q
LD(h) ≤≤≤ E

h∼Q̂
LS(h) +

1

λ

[
KL(Q∥P) + λ2σ2

2n
+ ln

1

δ

])
≥ 1−δ .

From an algorithm design perspective, linear “tempered bounds” promote the minimization of

E
h∼Q̂

LS(h) +
1

λ
KL(Q∥P) .

The optimal Gibbs posterior is given by (See Catoni 2007, Alquier et al. 2016,...)

Q∗(h) =
1

Z
P(h) e−λ L̂S (h) .

where Z is a normalizing constant.
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Tighter bounds for the [0, 1]-loss (Classical PAC-Bayes theorems)

Corollary

With a bounded loss ℓ(h, z) ∈ [0, 1]:

(a) kl
(

E
h∼Q̂

LS(h), E
h∼Q

LD(h)
)
≤≤≤ 1

n

[
KL(Q∥P) + ln 2

√
n

δ

]
, (Langford and Seeger 2001)

(b) E
h∼Q

LD(h) ≤≤≤ E
h∼Q̂

LS(h) +

√
1
2n

[
KL(Q∥P) + ln 2

√
n

δ

]
, (McAllester 1999, 2003)

(c) E
h∼Q

LD(h) ≤≤≤ 1
1−e−c

(
c · E

h∼Q̂
LS(h) +

1
n

[
KL(Q∥P) + ln 1

δ

])
, (Catoni 2007)

kl(q, p) = q ln q
p + (1− q) ln 1−q

1−p ≥ 2(q − p)2 ,

∆c(q, p) = − ln[1− (1− e−c) · p]− c · q ,
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Tighter bounds for the [0, 1]-loss (Classical PAC-Bayes theorems)

kl
(

E
h∼Q̂

LS(h), E
h∼Q

LD(h)
)
≤≤≤ 1

n

[
KL(Q∥P) + ln 2

√
n

δ

]
.

From an algorithm design perspective, the “kl bound” promotes the minimization of

kl−1

(
E

h∼Q̂
LS(h),

1
n

[
KL(Q∥P) + ln 2

√
n

δ

])
:= sup

0≤p≤1

{
p : kl

(
E

h∼Q̂
LS(h), p

)
≤ 1

n

[
KL(Q∥P) + ln 2

√
n

δ

]}

The function kl−1 is differentiable (see Reeb et al. 2018)

pyTorch implementation (Viallard et al. 2021):
https://github.com/paulviallard/ECML21-PB-CBound/blob/master/core/kl_inv.py

Lemma (see Letarte, Germain, et al. 2019)

kl−1

(
E

h∼Q̂
LS(h),

1
n

[
KL(Q∥P) + ln 2

√
n

δ

])
= inf

c>0

{
1

1− e−c

(
c · E

h∼Q̂
LS(h) +

1
n

[
KL(Q∥P) + ln 2

√
n

δ

])}
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Distribution over parameters

Given a model / predictor hθ, where θ are parameters.

Consider P and Q as distributions over the set of parameters Θ.

∀Q on Θ : kl
(

E
θ∼Q̂

LS(hθ), E
θ∼Q

LD(hθ)
)
≤≤≤ 1

n

[
KL(Q∥P) + ln 2

√
n

δ

]
.

Typical approach for (stochastics) neural networks
(Dziugaite and D. M. Roy 2017; Neyshabur et al. 2018; Nozawa et al. 2020; Pérez-Ortiz et al. 2021, among
many others.)

P = N (Wp, σpI) where Wp are the random/pre-learned weights initialization.

Q = N (W, σI), where W are the learned/fine-tuned neural network weights.

Then, KL(Q∥P) = 1
2∥W −Wp∥2.
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Self-certified learning of neural networks (Pérez-Ortiz et al. 2021)

Build on the pioneer work of
Dziugaite and D. M. Roy 2017.

Tight guarantees!

risk ≤ 1.55% on MNIST (CNN)
with probability ≥ 95%.

Easy to train.

Source code (pyTorch):
https://github.com/mperezortiz/PBB
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Bayesian Learning (Zhang 2006, Grünwald 2012, Germain, Bach, et al. 2016, Masegosa et al. 2020)

Negative log-likelihood loss function

ℓnll
(
hθ, (x , y)

)
= ln 1

p(y |x ,θ)

Bayesian Rule

For each θ ∈ Θ:
p(θ|X ,Y ) =

p(θ) p(Y |X , θ)

p(Y |X )
with

X = {x1, . . . , xn}
Y = {y1, . . . , yn}

p(θ|X ,Y ) is the posterior given X ,Y (similar Q over H)

p(θ) is the prior (similar to P over H)

p(Y |X , θ) is the likelihood of the parameter θ given X ,Y

p(Y |X ) =
∫
Θ
p(θ) p(Y |X , θ)dθ is the marginal likelihood of the model at hand.

Then,
L̂S(hθ) =

1

n

n∑
i=1

ℓnll
(
hθ, (xi , yi )

)
= −1

n
ln p(Y |X , θ)
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Mutual Information

Consider a learning algorithm that returns a distribution Q(S) on H given S∼Dn.

Let θ ∼ Q(S). Xu and Ragingsky (2017) showed that for sub-Gaussian losses:

E
S∼D

∣∣∣∣ E
h∼Q

LD(h) − E
h∼Q̂

LS(h)

∣∣∣∣ ≤
√

2σI (θ,S)

n
,

where I (θ,S) is the mutual information between the parameters and the train data.

This is equivalent to a PAC-Bayesian bound in expectation (e.g., Alquier 2021):

I (θ,S) = E
S∼D

KL
(
Q(S)

∥∥∥P∗
D

)
for the data-dependent prior P∗

D := E
S∼D

Q(S)

≤ E
S∼D

KL
(
Q(S)

∥∥∥P ) for any prior P.

Negrea et al. (2019) showed that Stochastic Gradient Langevin Dynamics (SGLD)
minimizes a PAC-Bayes bound with a data-dependant prior P∗

D .
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Some of our recent work

PAC-Bayesian learning of:

Aggregated binary-activated neural networks (Letarte, Germain, et al. 2019; Biggs and
Guedj 2021; Fortier-Dubois et al. 2023).

Kernels, via a posterior distribution over random Fourier features (Letarte, Morvant, et al.
2019), and extension to contrastive learning (Letarte 2023, chapter 3).

Wassertein GANs (Mbacke et al. 2023)
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Other Recorded Video Tutorials

Laviolette 2017: Tutorial on PAC-Bayesian Theory. https://youtu.be/GnRX9Pvw6Xw

Part of the NeurIPS workshop “(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends
and insights”. https://bguedj.github.io/nips2017/

Shawe-Taylor & Rivasplata 2018: Statistical Learning Theory - a Hitchhiker’s Guide,
https://youtu.be/m8PLzDmW-TY (NeurIPS tutorial)

Guedj & Shawe-Taylor 2019: A Primer on PAC-Bayesian Learning.
https://bguedj.github.io/icml2019/ (ICML tutorial)
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Other Monographs

Langford 2005: Tutorial on Practical Prediction Theory for Classification.
http://www.jmlr.org/papers/v6/langford05a.html

Catoni 2007: Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical
Learning. https://arxiv.org/abs/0712.0248

McAllester 2013: A PAC-Bayesian Tutorial with A Dropout Bound.
https://arxiv.org/abs/1307.2118

Van Erven 2014: PAC-Bayes Mini-tutorial: A Continuous Union Bound.
https://arxiv.org/abs/1405.1580

Germain, Lacasse, Laviolette, Marchand, and J.-F. Roy 2015: Risk Bounds for the Majority Vote:
From a PAC-Bayesian Analysis to a Learning Algorithm
http://jmlr.org/papers/v16/germain15a.html

Guedj 2019: A Primer on PAC-Bayesian Learning. https://arxiv.org/abs/1901.05353

Alquier 2021: User-friendly introduction to PAC-Bayes bounds. https://arxiv.org/abs/2110.11216

Letarte 2023: PAC-Bayesian representation learning (PhD thesis).
http://hdl.handle.net/20.500.11794/120163
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Thank you!
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