PAC-Bayesian Learning: A tutorial

Pascal Germain www.pascalgermain.info

Université Laval, département d'informatique et de génie logiciel Canada CIFAR AI Chair

Workshop PAC-Bayes meets Interactive Learning @ ICML 2023

CIFAR INSTITUT INSTITUTE CANADIAN FOR ADVANCED RECHERCHES RESEARCH AVANCEES

oupe de echerche en oprentissage utomatique de aval

Pascal Germain

Acknowledgment

The

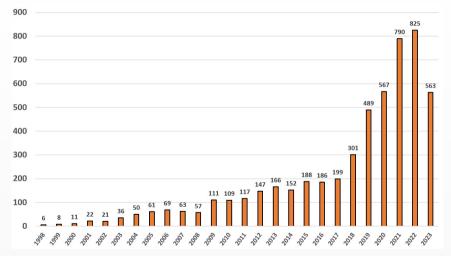
Institute

This tutorial material has been developed in collaboration with Benjamin Guedj. https://bguedj.github.io/

Acknowledgment

This tutorial is greatly inspired by my mentor, François Laviolette.

PAC-Bayes Publications



Number of search results per year for "PAC-Bayes(ian)" keywords on Google Scholar.

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning
- **3** PAC-Bayesian Theory
 - A General Theorem
 - Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work
- 5 To go further.

1 Preamble

What is PAC-Bayes?

Historical Notes

2 Statistical Learning Theory

- The Generalization Challenge
- PAC (without Bayes) Learning
- PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work

5 To go further.

What is PAC-Bayes?

- A statistical learning theory
- A frequentist approach with a Bayesian twist (notions of prior and posterior).
- A generic framework to (re)think generalisation of machine learning algorithms.

PAC-Bayes Theorems

High-confidence bounds on the generalization loss of a predictor/model obtained from its performance on the training sample.

• PAC-Bayes bounds are safety checks; numerical certificates!

PAC-Bayes Algorithms

Optimizing the PAC-Bayes bounds lead to self-certified learning algorithms.

- Numerous existing learning algorithms can be cast as PAC-Bayes ones, ...
- ... and new algorithms can be conceived this way!

- PAC-Bayes is modular:
 - Choose your own predictor/model, loss, data assumptions, etc.
- PAC-Bayes is inclusive:
 - Reconciliates Frequentists and Bayesians
 - Bridges machine learning and information theory
 - Welcomes both modeling cultures: data modeling and algorithmic modeling (Breiman 2001)
 - Offers a playground for those developing equations and those running experiments.
 - Adapts to many existing learning approaches, from boosting to deep neural networks
- Plus:
 - The proofs are (relatively) simple
 - The bounds can be tight (numerically non-vacuous)
 - Deriving self-certified learning algorithms is a noble and fun journey!

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning
- **3** PAC-Bayesian Theory
 - A General Theorem
 - Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work
- 5 To go further.

Historical landmarks

- Pre-history: PAC analysis of Bayesian estimators (Shawe-Taylor and Williamson 1997)
- Birth: First PAC-Bayesian theorems (McAllester 1998, 1999)
 - Empirical bounds
 - PAC-Bayes kl bound (Langford and Seeger 2001)
 - Neural Networks (Langford and Caruana 2001)
 - SVM & Margins (Langford and Shawe-Taylor 2002)
 - Self-certified learning algorithms
 - "PAC-Bayesian learning of linear classifiers"
 - (Germain, Lacasse, Laviolette, and Marchand 2009)
 - "Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks..." (Dziugaite and D. M. Roy 2017)
 - "Tighter Risk Certificates for Neural Networks"

(Pérez-Ortiz et al. 2021)

Oracle bounds

 PAC-Bayes tempered bound, localized prior, link with mutual information, ... (Catoni 2003, 2004, 2007)

1 Preamble

- What is PAC-Bayes?
- Historical Notes

2 Statistical Learning Theory

- The Generalization Challenge
- PAC (without Bayes) Learning
- PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work

5 To go further.

1 Preamble

- What is PAC-Bayes?
- Historical Notes

2 Statistical Learning Theory

The Generalization Challenge

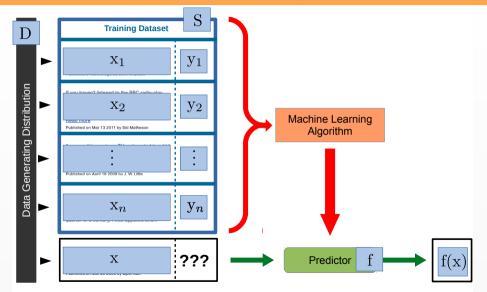
- PAC (without Bayes) Learning
- PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work

5 To go further.

Machine Learning: The Prediction Problem (non-interactive setting)



Definitions

A learning example $z := (x, y) \in \mathcal{Z}$ is a description-label pair.

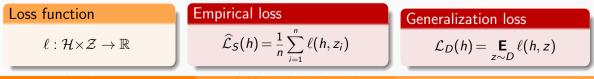
Data generating distribution

Each example is an observation from distribution D on \mathcal{Z} .

Learning sample

$$S \coloneqq \{z_1, z_2, \ldots, z_n\} \sim D^n$$

Predictors (or hypothesis)Learning algorithm $h: \mathcal{X} \to \mathcal{Y}, \quad h \in \mathcal{H}$ $A(S) \longrightarrow h$



Goal: Minimize the generalization loss on D

$$\mathcal{L}_D(h) = \mathop{\mathbf{E}}_{z\sim D} \ell(h,z)$$

The learning algorithm see *only* the **empirical loss** on *S*:

$$\widehat{\mathcal{L}}_{\mathcal{S}}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h, z_i)$$

1 Preamble

- What is PAC-Bayes?
- Historical Notes

2 Statistical Learning Theory

- The Generalization Challenge
- PAC (without Bayes) Learning
- PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work

5 To go further.

PAC (without Bayes) Learning

PAC guarantees (Probably Approximately Correct)

With probability at least " $1-\delta$ ", the loss of predictor h is less than " ε "

$$\Pr_{i\sim D^n}\left(\mathcal{L}_D(h)\leq \varepsilon(\widehat{\mathcal{L}}_S(h),n,\delta,\ldots)\right)\geq 1-\delta$$

• Single hypothesis *h* (building block):

 $\mathcal{L}_D(h) \leq \widehat{\mathcal{L}}_S(h) + \sqrt{\frac{1}{2n}\log\left(\frac{1}{\delta}\right)}.$

• Finite function class \mathcal{H} (worst-case approach):

 $orall h \in \mathcal{H}, \ \ \mathcal{L}_D(h) \leq \widehat{\mathcal{L}}_S(h) + \sqrt{rac{1}{2n}\log\left(rac{|\mathcal{H}|}{\delta}
ight)}$

• Structural risk minimisation; hypotheses h_i associated with prior weight p_i :

 $orall h_i \in \mathcal{H}, \ \ \mathcal{L}_D(h_i) \leq \widehat{\mathcal{L}}_\mathcal{S}(h_i) + \sqrt{rac{1}{2n} \log\left(rac{1}{p_i \delta}
ight)}$

• Uncountably infinite function class: VC dimension, Rademacher complexity...

Pascal Germain

1 Preamble

- What is PAC-Bayes?
- Historical Notes

2 Statistical Learning Theory

- The Generalization Challenge
- PAC (without Bayes) Learning

PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work

5 To go further.

PAC-Bayesian Learning

Classical PAC approaches are suited to analyze the performance of individual functions, \longrightarrow Extension: PAC-Bayes allows to consider *distributions* over hypotheses.

It tastes Bayesian...

Given a **prior** distribution P on \mathcal{H} and a **posterior** distribution Q on \mathcal{H} .. $\Pr_{S \sim D^n} \left(\underbrace{\mathsf{E}}_{h \sim Q} \mathcal{L}_D(h) \leq \varepsilon(\underbrace{\mathsf{E}}_{h \sim Q} \widehat{\mathcal{L}}_S(h), n, \delta, P, \ldots) \right) \geq 1 - \delta$

... but it's not!

Prior

- PAC-Bayes: bounds hold for any prior distribution
- Bayes: prior choice impacts inference

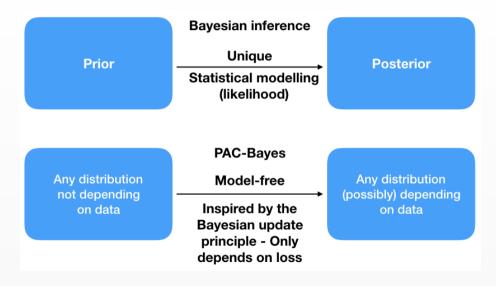
Posterior

- PAC-Bayes: bounds hold for any posterior distribution
- Bayes: posterior uniquely defined by prior and likelihood

o Data

- PAC-Bayes: observations come from an unknown data distribution (*iid* assumption)
- Bayes: observations are generated by a model from a specified family

PAC-Bayes bounds vs. Bayesian inference



A Classical PAC-Bayesian Theorem

PAC-Bayesian theorem

(adapted from McAllester 1999, 2003)

For any distribution D on $\mathcal{X} \times \mathcal{Y}$, for any set of predictors \mathcal{H} , for any loss $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to [0,1]$, for any distribution P on \mathcal{H} , for any $\delta \in (0,1]$, we have,

$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{H} : \underset{h \sim Q}{\mathsf{E}\mathcal{L}_D}(h) \leq \underset{h \sim Q}{\mathsf{E}\widehat{\mathcal{L}}_S}(h) + \sqrt{\frac{1}{2n} \left[\mathrm{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta} \right]} \right) \geq 1 - \delta,$$

where $\operatorname{KL}(Q||P) = \underset{h \sim Q}{\mathsf{E}} \ln \frac{Q(h)}{P(h)}$ is the Kullback-Leibler divergence.

Training bound

• Gives generalization guarantees not based on testing sample.

Valid for all posterior Q on \mathcal{H}

• Inspiration for conceiving new learning algorithms as we can optimise for Q.

Pascal Germain

One can predict with...

• The "Maximum-A-Posteriori (MAP)" predictor:

 $MAP_Q(x) = h^*$ with $h^* = \underset{h}{\operatorname{argmax}}(Q(h)).$

• The (so-called) "Bayes" majority vote predictor (classification only):

$$B_Q(x) = \max_{y \in \mathcal{Y}} \left[\int_{\mathcal{H}} Q(h) I[h(x) = y] dh
ight] ext{ with } h \sim Q_h$$

• The (so-called) "Gibbs" stochastic predictor:

 $G_Q(x) = h(x)$ with $h \sim Q$.

• The "Aggregated" predictor :

$$H_Q(x) = \int_{\mathcal{H}} Q(h) dh$$

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work
- 5 To go further.

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work
- 5 To go further.

$$\begin{array}{lll} \Delta \mbox{-function: "distance" between } \mathop{\textbf{E}}_{h\sim Q} \widehat{\mathcal{L}}_{S}(h) \mbox{ and } \mathop{\textbf{E}}_{h\sim Q} \mathcal{L}_{D}(h) \\ \\ \mbox{Convex function } \Delta : [0,1] \times [0,1] \to \mathbb{R}. \end{array}$$

(Bégin et al. 2014, 2016; Germain 2015)

For any distribution D on $\mathcal{X} \times \mathcal{Y}$, for any set \mathcal{H} of voters, for any loss $\ell : \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to [0,1]$, for any distribution P on \mathcal{H} , for any $\delta \in (0,1]$, and for any Δ -function, we have, with probability at least $1-\delta$ over the choice of $S \sim D^n$,

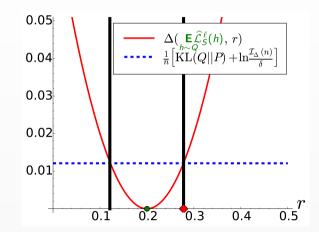
$$\forall Q \text{ on } \mathcal{H}: \quad \Delta \Big(\underbrace{\mathsf{E}}_{h \sim Q} \widehat{\mathcal{L}}_{S}(h), \underbrace{\mathsf{E}}_{h \sim Q} \mathcal{L}_{D}(h) \Big) \leq \frac{1}{n} \Big[\mathrm{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}(n)}{\delta} \Big]$$

where

$$\mathcal{I}_{\Delta}(n) = \mathbf{E}_{h\sim P} \mathbf{E}_{S'\sim D^n} e^{n \cdot \Delta(\widehat{\mathcal{L}}_{S'}(h), \mathcal{L}_D(h))}$$

$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{H} : \ \Delta \left(\underset{h \sim Q}{\mathsf{E}} \widehat{\mathcal{L}}_S(h), \underset{h \sim Q}{\mathsf{E}} \mathcal{L}_D(h) \right) \le \frac{1}{n} \left[\mathrm{KL}(Q \| P) + \ln \frac{\mathcal{I}_\Delta(n)}{\delta} \right] \right) \ge 1 - \delta \,.$$

Interpretation.



$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{H} : \Delta \left(\underbrace{\mathsf{E}}_{h \sim Q} \widehat{\mathcal{L}}_S(h), \underbrace{\mathsf{E}}_{h \sim Q} \mathcal{L}_D(h) \right) \leq \frac{1}{n} \left[\operatorname{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}(n)}{\delta} \right] \right) \geq 1 - \delta.$$

Proof ideas.

Change of Measure Inequality (Donsker and Varadhan 1975; Csiszár 1975)

For any measurable function $\phi : \mathcal{H} \to \mathbb{R}$, we have

$$\mathop{\mathsf{E}}_{h\sim Q}\phi(h) \leq \operatorname{KL}(Q||P) + \ln\left(\mathop{\mathsf{E}}_{h\sim P}e^{\phi(h)}\right)$$

Markov's inequality

$$\Pr\left(X \leq \frac{\mathbf{E}X}{\delta}\right) \geq 1 - \delta \quad \equiv \quad X \leq 1 - \delta \quad \frac{\mathbf{E}X}{\delta}.$$

See also the *Exponential Stochastic Inequality* \leq_{δ} (proposed by Grünwald et al. 2023).

$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{H} : \Delta \left(\underbrace{\mathsf{E}}_{h \sim Q} \widehat{\mathcal{L}}_S(h), \underbrace{\mathsf{E}}_{h \sim Q} \mathcal{L}_D(h) \right) \leq \frac{1}{n} \left[\operatorname{KL}(Q \| P) + \ln \frac{\mathcal{I}_\Delta(n)}{\delta} \right] \right) \geq 1 - \delta.$$

Proof.

$$n \cdot \Delta \left(\underset{h\sim Q}{\mathsf{E}} \widehat{\mathcal{L}}_{S}(h), \underset{h\sim Q}{\mathsf{E}} \mathcal{L}_{D}(h) \right)$$
Jensen's Inequality
$$\leq \underset{h\sim Q}{\mathsf{E}} n \cdot \Delta \left(\widehat{\mathcal{L}}_{S}(h), \mathcal{L}_{D}(h) \right)$$
Change of measure
$$\leq \operatorname{KL}(Q \| P) + \ln \underset{h\sim P}{\mathsf{E}} e^{n\Delta \left(\widehat{\mathcal{L}}_{S}(h), \mathcal{L}_{D}(h) \right)}$$
Markov's Inequality
$$\leq _{1-\delta} \operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \underset{s'\sim D^{n}}{\mathsf{E}} \underset{h\sim P}{\mathsf{E}} e^{n \cdot \Delta \left(\widehat{\mathcal{L}}_{S'}(h), \mathcal{L}_{D}(h) \right)}$$

$$= \operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \underset{h\sim P}{\mathsf{E}} \underset{s'\sim D^{n}}{\mathsf{E}} e^{n \cdot \Delta \left(\widehat{\mathcal{L}}_{S'}(h), \mathcal{L}_{D}(h) \right)}$$

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work
- 5 To go further.

The linear case
$$\Delta_{\lambda}(q,p) \coloneqq \frac{\lambda}{n}(p-q)$$

(Alquier et al. 2016)

If the loss is bounded; $\forall h, z : \ell(h, z) \in [0, b]$:

$$\mathcal{I}_{\Delta}(n) = \mathop{\mathsf{E}}_{h\sim P} \mathop{\mathsf{E}}_{S'\sim D^{n}} e^{\lambda \cdot (\mathcal{L}_{D}(h) - \widehat{\mathcal{L}}_{S'}(h))} \underbrace{\leq}_{(\text{Hoeffding})} \mathop{\mathsf{E}}_{h\sim P} e^{\frac{\lambda^{2}b^{2}}{2n}} = e^{\frac{\lambda^{2}b^{2}}{2n}}$$

$$\mathop{\mathsf{Pr}}_{s\sim D^{n}} \left(\forall Q \text{ on } \mathcal{H} : \mathop{\mathsf{E}}_{h\sim Q} \mathcal{L}_{D}(h) \leq \mathop{\mathsf{E}}_{h\sim Q} \widehat{\mathcal{L}}_{S}(h) + \frac{1}{\lambda} \left[\operatorname{KL}(Q \| P) + \frac{\lambda^{2}b^{2}}{2n} + \ln \frac{1}{\delta} \right] \right) \geq 1 - \delta.$$

 $\underline{\text{If the loss is sub-Gaussian}}; \ \forall h, \lambda: \ \mathbf{E}_z \ e^{\lambda(\ell(h,z) - \mathcal{L}_D(h))} \leq \ e^{\frac{\lambda^2 \sigma^2}{2n}}:$

$$\mathcal{I}_{\Delta}(n) = \mathop{\mathbf{E}}_{h\sim P} \mathop{\mathbf{E}}_{S'\sim D^{n}} e^{\lambda \cdot (\mathcal{L}_{D}(h) - \widehat{\mathcal{L}}_{S'}(h))} \leq \mathop{\mathbf{E}}_{h\sim P} e^{\frac{\lambda^{2}\sigma^{2}}{2n}} = e^{\frac{\lambda^{2}\sigma^{2}}{2n}}$$

$$\mathop{\mathrm{Pr}}_{S\sim D^{n}} \left(\forall Q \text{ on } \mathcal{H} : \mathop{\mathbf{E}}_{h\sim Q} (h) \leq \mathop{\mathbf{E}}_{h\sim Q} \widehat{\mathcal{L}}_{S}(h) + \frac{1}{\lambda} \left[\mathrm{KL}(Q \| P) + \frac{\lambda^{2}\sigma^{2}}{2n} + \ln \frac{1}{\delta} \right] \right) \geq 1 - \delta.$$

The linear case $\Delta_{\lambda}(q,p) \coloneqq \frac{\lambda}{n}(p-q)$

$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{H} : \operatorname{\mathsf{E}}_{h \sim Q}^{\mathcal{L}}(h) \leq \operatorname{\mathsf{E}}_{h \sim Q}^{\widehat{\mathcal{L}}}(h) + \frac{1}{\lambda} \left[\operatorname{KL}(Q \| P) + \frac{\lambda^2 \sigma^2}{2n} + \ln \frac{1}{\delta} \right] \right) \geq 1 - \delta.$$

From an algorithm design perspective, linear "tempered bounds" promote the minimization of

 $\mathop{\mathsf{E}}_{h\sim Q}\widehat{\mathcal{L}}_{\mathcal{S}}(h) + \frac{1}{\lambda}\mathrm{KL}(Q\|P)\,.$

The optimal Gibbs posterior is given by

(See Catoni 2007, Alquier et al. 2016,...)

$$Q^*(h)\,=\,rac{1}{Z}P(h)\,e^{-\lambda\,\widehat{\mathcal{L}}_{\mathcal{S}}(h)}$$

where Z is a normalizing constant.

Tighter bounds for the [0, 1]-loss (Classical PAC-Bayes theorems)

Corollary

With a bounded loss
$$\ell(h, z) \in [0, 1]$$
:

$$\begin{aligned} & \text{With a bounded loss } \ell(h, z) \in [0, 1]: \\ & \text{With } k! \left(\underset{h \sim Q}{\mathsf{E} \widehat{\mathcal{L}}_{S}}(h), \underset{h \sim Q}{\mathsf{E} \mathcal{L}_{D}}(h) \right) \leq \frac{1}{n} \left[\text{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta} \right], \\ & \text{(Langford and Seeger 2001)} \\ & \text{With } k! \left(\underset{h \sim Q}{\mathsf{E} \mathcal{L}_{D}}(h) \leq \frac{\mathsf{E} \widehat{\mathcal{L}}_{S}}{h \sim Q}(h) + \sqrt{\frac{1}{2n} \left[\text{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta} \right]}, \\ & \text{(McAllester 1999, 2003)} \\ & \text{With } k! \left(\underset{h \sim Q}{\mathsf{E} \mathcal{L}_{D}}(h) \leq \frac{1}{1 - e^{-c}} \left(c \cdot \underset{h \sim Q}{\mathsf{E} \widehat{\mathcal{L}}_{S}}(h) + \frac{1}{n} \left[\text{KL}(Q \| P) + \ln \frac{1}{\delta} \right] \right), \\ & \text{(Catoni 2007)} \end{aligned}$$

$$\begin{aligned} & \text{kl}(q,p) &= q \ln \frac{q}{p} + (1-q) \ln \frac{1-q}{1-p} \geq 2(q-p)^2, \\ & \Delta_c(q,p) &= -\ln[1-(1-e^{-c}) \cdot p] - c \cdot q, \end{aligned}$$

Tighter bounds for the [0, 1]-loss (Classical PAC-Bayes theorems)

$$\operatorname{kl}\left(\underset{h\sim Q}{\mathsf{E}\widehat{\mathcal{L}}_{S}}(h),\underset{h\sim Q}{\mathsf{E}}\mathcal{L}_{D}(h)\right) \leq \frac{1}{n}\left[\operatorname{KL}(Q\|P) + \ln \frac{2\sqrt{n}}{\delta}\right].$$

From an algorithm design perspective, the "kl bound" promotes the minimization of

$$\mathrm{kl}^{-1}\left(\mathsf{E}\widehat{\mathcal{L}}_{S}(h), \frac{1}{n}\left[\mathrm{KL}(\mathcal{Q}\|\mathcal{P}) + \ln\frac{2\sqrt{n}}{\delta}\right]\right) \coloneqq \sup_{0 \le p \le 1} \left\{ p : \mathrm{kl}\left(\mathsf{E}\widehat{\mathcal{L}}_{S}(h), p\right) \le \frac{1}{n}\left[\mathrm{KL}(\mathcal{Q}\|\mathcal{P}) + \ln\frac{2\sqrt{n}}{\delta}\right] \right\}$$

The function kl^{-1} is differentiable (see Reeb et al. 2018)

pyTorch implementation (Viallard et al. 2021): https://github.com/paulviallard/ECML21-PB-CBound/blob/master/core/kl_inv.py

Lemma (see Letarte, Germain, et al. 2019)

$$\mathrm{kl}^{-1}\left(\mathsf{E}\widehat{\mathcal{L}}_{S}(h), \frac{1}{n}\left[\mathrm{KL}(\mathcal{Q}\|\mathcal{P}) + \ln\frac{2\sqrt{n}}{\delta}\right]\right) = \inf_{c>0}\left\{\frac{1}{1 - e^{-c}}\left(c \cdot \mathsf{E}\widehat{\mathcal{L}}_{S}(h) + \frac{1}{n}\left[\mathrm{KL}(\mathcal{Q}\|\mathcal{P}) + \ln\frac{2\sqrt{n}}{\delta}\right]\right)\right\}$$

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning
- **3** PAC-Bayesian Theory
 - A General Theorem
 - Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work

5 To go further.

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning
- **3** PAC-Bayesian Theory
 - A General Theorem
 - Some PAC-Bayes bounds
- PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work
- 5 To go further.

Given a model / predictor h_{θ} , where θ are parameters.

Consider P and Q as distributions over the set of parameters Θ .

$$\forall Q \text{ on } \Theta : \quad \mathrm{kl}\left(\underset{\theta \sim Q}{\mathsf{E}}\widehat{\mathcal{L}}_{S}(h_{\theta}), \underset{\theta \sim Q}{\mathsf{E}}\mathcal{L}_{D}(h_{\theta})\right) \leq \frac{1}{n} \left[\mathrm{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta}\right].$$

Typical approach for (stochastics) neural networks (Dziugaite and D. M. Roy 2017; Neyshabur et al. 2018; Nozawa et al. 2020; Pérez-Ortiz et al. 2021, among many others.)

- $P = \mathcal{N}(\mathbf{W}_p, \sigma_p \mathbf{I})$
- $Q = \mathcal{N}(\mathbf{W}, \sigma \mathbf{I}),$

where \mathbf{W}_{p} are the random/pre-learned weights initialization.

where \boldsymbol{W} are the learned/fine-tuned neural network weights.

Then, $KL(Q||P) = \frac{1}{2} ||\mathbf{W} - \mathbf{W}_{p}||^{2}$.

Self-certified learning of neural networks

(Pérez-Ortiz et al. 2021)

PÉREZ-ORTIZ, RIVASPLATA, SHAWE-TAYLOR AND SZEPESVÁRI

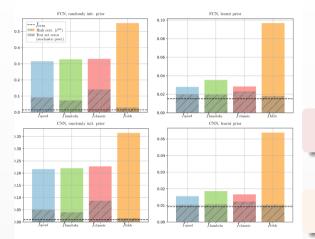


Figure 3: Tightness of the risk certificates for MNIST across different architectures, priors and training objectives. The bottom shaded areas correspond to the test set.

PAC-Bayesian Learning: A tutorial

- Build on the pioneer work of Dziugaite and D. M. Roy 2017.
- Tight guarantees!

 $\label{eq:risk} \begin{array}{l} \mbox{risk} \leq 1.55\% \mbox{ on MNIST (CNN)} \\ \mbox{with probability} \geq 95\%. \end{array}$

• Easy to train.

Source code (pyTorch):

https://github.com/mperezortiz/PBB

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning
- **3** PAC-Bayesian Theory
 - A General Theorem
 - Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work
- 5 To go further.

Bayesian Learning (Zhang 2006, Grünwald 2012, Germain, Bach, et al. 2016, Masegosa et al. 2020)

Negative log-likelihood loss function

$$\mathcal{Q}_{\mathrm{nll}}ig(h_{ heta},(x,y)ig) \,=\, \mathrm{ln}\, rac{1}{p(y|x, heta)}$$

Bayesian Rule

For each $\theta \in \Theta$:

$$p(\theta|X,Y) = \frac{p(\theta) p(Y|X,\theta)}{p(Y|X)}$$

•
$$p(\theta|X, Y)$$
 is the *posterior* given X, Y

• $p(\theta)$ is the prior

(similar Q over \mathcal{H})

(similar to
$$P$$
 over \mathcal{H})

with $X = \{x_1, ..., x_n\}$ $Y = \{y_1, ..., y_n\}$

• $p(Y|X, \theta)$ is the *likelihood* of the parameter θ given X, Y

• $p(Y|X) = \int_{\Theta} p(\theta) p(Y|X, \theta) d\theta$ is the marginal likelihood of the model at hand.

Then,

$$\widehat{\mathcal{L}}_{\mathcal{S}}(h_{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell_{\mathrm{nll}}(h_{\theta}, (x_i, y_i)) = -\frac{1}{n} \ln p(Y|X, \theta)$$

1 Preamble

- What is PAC-Bayes?
- Historical Notes
- 2 Statistical Learning Theory
 - The Generalization Challenge
 - PAC (without Bayes) Learning
 - PAC-Bayesian Learning
- **3** PAC-Bayesian Theory
 - A General Theorem
 - Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work
- 5 To go further.

Mutual Information

Consider a learning algorithm that returns a distribution Q(S) on \mathcal{H} given $S{\sim}D^n$.

• Let $\theta \sim Q(S)$. Xu and Ragingsky (2017) showed that for sub-Gaussian losses:

$$\mathbf{E}_{S \sim D} \left| \mathbf{E}_{h \sim Q} \mathcal{L}_{D}(h) - \mathbf{E}_{h \sim Q} \widehat{\mathcal{L}}_{S}(h) \right| \leq \sqrt{\frac{2\sigma I(\theta, S)}{n}} \,,$$

where $I(\theta, S)$ is the *mutual information* between the parameters and the train data. • This is equivalent to a PAC-Bayesian bound *in expectation* (e.g., Alquier 2021):

$$\begin{split} I(\theta,S) &= \mathop{\mathbf{E}}_{S\sim D} \operatorname{KL} \left(Q(S) \left\| P_D^* \right) & \text{ for the } data-dependent prior } P_D^* \coloneqq \mathop{\mathbf{E}}_{S\sim D} Q(S) \\ &\leq \mathop{\mathbf{E}}_{S\sim D} \operatorname{KL} \left(Q(S) \left\| P \right. \right) & \text{ for any prior } P. \end{split}$$

• Negrea et al. (2019) showed that *Stochastic Gradient Langevin Dynamics* (SGLD) minimizes a PAC-Bayes bound with a data-dependent prior P_D^* .

Pascal Germain

1 Preamble

- What is PAC-Bayes?
- Historical Notes

2 Statistical Learning Theory

- The Generalization Challenge
- PAC (without Bayes) Learning
- PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
 - Some PAC-Bayes bounds

PAC-Bayesian Learning Use cases

- Neural Networks
- Bayesian learning
- Mutual Information
- Some of our recent work

5 To go further.

PAC-Bayesian learning of:

- Aggregated binary-activated neural networks (Letarte, Germain, et al. 2019; Biggs and Guedj 2021; Fortier-Dubois et al. 2023).
- Kernels, via a posterior distribution over random Fourier features (Letarte, Morvant, et al. 2019), and extension to contrastive learning (Letarte 2023, chapter 3).
- Wassertein GANs (Mbacke et al. 2023)

1 Preamble

- What is PAC-Bayes?
- Historical Notes

2 Statistical Learning Theory

- The Generalization Challenge
- PAC (without Bayes) Learning
- PAC-Bayesian Learning

3 PAC-Bayesian Theory

- A General Theorem
- Some PAC-Bayes bounds
- 4 PAC-Bayesian Learning Use cases
 - Neural Networks
 - Bayesian learning
 - Mutual Information
 - Some of our recent work

5 To go further...

Other Recorded Video Tutorials

Laviolette 2017: Tutorial on PAC-Bayesian Theory. https://youtu.be/GnRX9Pvw6Xw
 Part of the NeurIPS workshop "(Almost) 50 Shades of Bayesian Learning: PAC-Bayesian trends and insights". https://bguedi.github.io/nips2017/

- Shawe-Taylor & Rivasplata 2018: Statistical Learning Theory a Hitchhiker's Guide, https://youtu.be/m8PLzDmW-TY (NeurIPS tutorial)
- Guedj & Shawe-Taylor 2019: A Primer on PAC-Bayesian Learning. https://bguedj.github.io/icml2019/ (ICML tutorial)

Other Monographs

- Langford 2005: Tutorial on Practical Prediction Theory for Classification. http://www.jmlr.org/papers/v6/langford05a.html
- Catoni 2007: Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning. https://arxiv.org/abs/0712.0248
- McAllester 2013: A PAC-Bayesian Tutorial with A Dropout Bound. https://arxiv.org/abs/1307.2118
- Van Erven 2014: PAC-Bayes Mini-tutorial: A Continuous Union Bound. https://arxiv.org/abs/1405.1580
- Germain, Lacasse, Laviolette, Marchand, and J.-F. Roy 2015: Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm http://jmlr.org/papers/v16/germain15a.html
- Guedj 2019: A Primer on PAC-Bayesian Learning. https://arxiv.org/abs/1901.05353
- Alquier 2021: User-friendly introduction to PAC-Bayes bounds. https://arxiv.org/abs/2110.11216
- Letarte 2023: PAC-Bayesian representation learning (PhD thesis). http://hdl.handle.net/20.500.11794/120163

Pascal Germain

PAC-Bayesian Learning: A tutorial

Thank you!

References I

- Alquier, Pierre (2021). "User-friendly introduction to PAC-Bayes bounds". In: *CoRR* abs/2110.11216.
- Alquier, Pierre, James Ridgway, and Nicolas Chopin (2016). "On the properties of variational approximations of Gibbs posteriors". In: J. Mach. Learn. Res. 17, 239:1–239:41.
- Bégin, Luc, Pascal Germain, François Laviolette, and Jean-Francis Roy (2014). "PAC-Bayesian Theory for Transductive Learning". In: AISTATS.
- (2016). "PAC-Bayesian Bounds based on the Rényi Divergence". In: AISTATS.
- Biggs, Felix and Benjamin Guedj (2021). "Differentiable PAC–Bayes Objectives with Partially Aggregated Neural Networks". In: *Entropy* 23.10.
- Breiman, Leo (2001). "Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)". In: Statistical Science 16.3, pp. 199–231.
- Catoni, Olivier (2003). "A PAC-Bayesian approach to adaptive classification". In: preprint LPMA 840.
- (2004). Statistical Learning Theory and Stochastic Optimization. École d'Été de Probabilités de Saint-Flour 2001. Springer.
- (2007). PAC-Bayesian supervised classification: the thermodynamics of statistical learning. Vol. 56. Inst. of Mathematical Statistic.
- Csiszár, I. (1975). "I-divergence geometry of probability distributions and minimization problems". In: Annals of Probability 3, pp. 146–158.
- Donsker, Monroe D. and S.R. Srinivasa Varadhan (1975). "Asymptotic evaluation of certain Markov process expectations for large time.". In: Communications on Pure and Applied Mathematics 28.

References II

 Dziugaite, Gintare Karolina and Daniel M. Roy (2017). "Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data". In: UAI. AUAI Press.
 Fortier-Dubois, Louis, Gaël Letarte, Benjamin Leblanc, Francois Laviolette, and Pascal Germain (2023). "Learning

- Aggregations of Binary Activated Neural Networks with Probabilities over Representations". In: Al. Canadian Artificial Intelligence Association.
- Germain, Pascal (2015). "Généralisations de la théorie PAC-bayésienne pour l'apprentissage inductif, l'apprentissage transductif et l'adaptation de domaine.". PhD thesis. Université Laval. URL:

http://hdl.handle.net/20.500.11794/26130.

- Germain, Pascal, Francis R. Bach, Alexandre Lacoste, and Simon Lacoste-Julien (2016). "PAC-Bayesian Theory Meets Bayesian Inference". In: *NIPS*, pp. 1876–1884.
- Germain, Pascal, Alexandre Lacasse, Francois Laviolette, and Mario Marchand (2009). "PAC-Bayesian learning of linear classifiers". In: *ICML*.
- Germain, Pascal, Alexandre Lacasse, Francois Laviolette, Mario Marchand, and Jean-Francis Roy (2015). "Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm". In: *JMLR* 16.

Grünwald, Peter (2012). "The Safe Bayesian - Learning the Learning Rate via the Mixability Gap". In: ALT.

- Grünwald, Peter, Muriel Felipe Pérez-Ortiz, and Zakaria Mhammedi (2023). *Exponential Stochastic Inequality*. arXiv: 2304.14217 [math.ST].
- Guedj, Benjamin (2019). "A Primer on PAC-Bayesian Learning". In: CoRR abs/1901.05353.
- Langford, John (2005). "Tutorial on Practical Prediction Theory for Classification". In: JMLR 6.
- Langford, John and Rich Caruana (2001). "(Not) Bounding the True Error". In: NIPS. MIT Press, pp. 809-816.

References III

Langford, John and Matthias Seeger (2001). Bounds for averaging classifiers. Tech. rep. Carnegie Mellon, Departement of Computer Science. Langford, John and John Shawe-Taylor (2002). "PAC-Bayes & Margins". In: NIPS. Letarte, Gaël (2023). "PAC-Bayesian representation learning". PhD thesis. Université Laval. URL: http://hdl.handle.net/20.500.11794/120163. Letarte, Gaël, Pascal Germain, Benjamin Guedj, and François Laviolette (2019). "Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks". In: NeurIPS, pp. 6869–6879. Letarte, Gaël, Emilie Morvant, and Pascal Germain (2019). "Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior". In: AISTATS. Vol. 89. Proceedings of Machine Learning Research. PMLR, pp. 768–776. Masegosa, Andrés R., Stephan Sloth Lorenzen, Christian Igel, and Yevgeny Seldin (2020), "Second Order PAC-Bavesian Bounds for the Weighted Majority Vote". In: NeurIPS. Mbacke, Sokhna Diarra, Florence Clerc, and Pascal Germain (2023), "PAC-Bayesian Generalization Bounds for Adversarial Generative Models". In: ICML. Vol. 162. Proceedings of Machine Learning Research. PMLR, pp. 1-9. McAllester, David (1998). "Some PAC-Bayesian Theorems". In: COLT. ACM, pp. 230-234. (1999). "Some PAC-Bayesian Theorems". In: Machine Learning 37.3. (2003). "PAC-Bayesian Stochastic Model selection". In: Machine Learning 51.1. ____ (2013). "A PAC-Bayesian Tutorial with A Dropout Bound". In: CoRR abs/1307.2118. ____ Negrea, Jeffrey, Mahdi Haghifam, Gintare Karolina Dziugaite, Ashish Khisti, and Daniel M. Roy (2019). "Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates". In: NeurIPS. pp. 11013-11023.

References IV

Neyshabur, Behnam, Srinadh Bhojanapalli, and Nathan Srebro (2018). "A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks". In: *ICLR (Poster)*. OpenReview.net.
Nozawa, Kento, Pascal Germain, and Benjamin Guedj (2020). "PAC-Bayesian Contrastive Unsupervised Representation Learning". In: UAI. Vol. 124. Proceedings of Machine Learning Research. AUAI Press, pp. 21–30.
Pérez-Ortiz, María, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári (2021). "Tighter Risk Certificates for Neural Networks". In: J. Mach. Learn. Res. 22, 227:1–227:40.
Reeb, David, Andreas Doerr, Sebastian Gerwinn, and Barbara Rakitsch (2018). "Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds". In: *NeurIPS*, pp. 3341–3351.
Shawe-Taylor, John and Robert C. Williamson (1997). "A PAC Analysis of a Bayesian Estimator". In: *COLT*.
Van Erven, Tim (2014). "PAC-Bayes Mini-tutorial: A Continuous Union Bound". In: arXiv: 1405.1580 [stat.ML].
Viallard, Paul, Pascal Germain, Amaury Habrard, and Emilie Morvant (2021). "Self-bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound". In: *ECML/PKDD (2)*. Vol. 12976. Lecture Notes in Computer Science. Springer, pp. 167–183.
Van Aria and Maria Daerialary (2021). "Internation of a transmitter science and processing processing and processing processing processing and processing and processing proc

Xu, Aolin and Maxim Raginsky (2017). "Information-theoretic analysis of generalization capability of learning algorithms". In: NIPS, pp. 2524–2533.

Zhang, Tong (2006). "Information-theoretic upper and lower bounds for statistical estimation". In: IEEE Trans. Information Theory 52.4.