Domain-Adversarial Neural Networks

Hana Ajakan¹, **Pascal Germain**¹, Hugo Larochelle², François Laviolette¹, Mario Marchand¹

¹ Département d'informatique et de génie logiciel, Université Laval, Québec, Canada ² Département d'informatique, Université de Sherbrooke, Québec, Canada

Groupe de recherche en apprentissage automatique de l'Université Laval (GRAAL)

December 13, 2014

1 Domain Adaptation Setting

2 Theoretical Foundations

3 Neural Network for Domain Adaptation

4 Empirical Results

Our Domain Adaptation Setting

Binary classification tasks

- Input space: \mathbb{R}^d
- Labels: $\{0,1\}$

Two different data distributions

- Source domain: \mathcal{D}_{S}
- Target domain: $\mathcal{D}_{\mathcal{T}}$

A domain adaptation learning algorithm is provided with

a labeled source sample $S = \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^m \sim (\mathcal{D}_S)^m,$

an unlabeled target sample $T = {\mathbf{x}_i^t}_{i=1}^m \sim (\mathcal{D}_T)^m$.

The goal is to build a classifier $\eta : \mathbb{R}^d \to \{0,1\}$ with a low target risk

$$R_{\mathcal{D}_{\mathcal{T}}}(\eta) \stackrel{\text{def}}{=} \Pr_{(\mathbf{x}^t, y^t) \sim \mathcal{D}_{\mathcal{T}}}[\eta(\mathbf{x}^t) \neq y^t].$$

Definition (Ben David et al., 2006)

Given two domain distributions \mathcal{D}_S and \mathcal{D}_T , and a **hypothesis class** \mathcal{H} , the \mathcal{H} -divergence between \mathcal{D}_S and \mathcal{D}_T is

$$\begin{aligned} d_{\mathcal{H}}(\mathcal{D}_{\mathcal{S}}, \mathcal{D}_{\mathcal{T}}) &\stackrel{\text{def}}{=} & 2\sup_{\eta \in \mathcal{H}} \left| \begin{array}{c} \Pr_{\mathbf{x}^{s} \sim \mathcal{D}_{\mathcal{S}}} \left[\eta(\mathbf{x}^{s}) = 1 \right] - \Pr_{\mathbf{x}^{t} \sim \mathcal{D}_{\mathcal{T}}} \left[\eta(\mathbf{x}^{t}) = 1 \right] \right|. \\ &= & 2\sup_{\eta \in \mathcal{H}} \left| \begin{array}{c} \Pr_{\mathbf{x}^{s} \sim \mathcal{D}_{\mathcal{S}}} \left[\eta(\mathbf{x}^{s}) = 1 \right] + \Pr_{\mathbf{x}^{t} \sim \mathcal{D}_{\mathcal{T}}} \left[\eta(\mathbf{x}^{t}) = 0 \right] - 1 \right|. \end{aligned}$$

The \mathcal{H} -divergence measures the ability of an hypothesis class \mathcal{H} to discriminate between source \mathcal{D}_S and target \mathcal{D}_T distributions.

Theorem (Ben David et al., 2006)

Let \mathcal{H} be a hypothesis class of VC-dimension d. With probability $1 - \delta$ over the choice of samples $S \sim (\mathcal{D}_S)^m$ and $T \sim (\mathcal{D}_T)^m$, for every $\eta \in \mathcal{H}$:

$$R_{\mathcal{D}_{\mathcal{T}}}(\eta) \leq R_{\mathcal{S}}(\eta) + \frac{4}{m}\sqrt{d\log\frac{2e\,m}{d} + \log\frac{4}{\delta}} + \hat{d}_{\mathcal{H}}(\mathcal{S}, T) + \frac{4}{m^2}\sqrt{d\log\frac{2\,m}{d} + \log\frac{4}{\delta}} + \beta$$

with $\beta \geq \inf_{\eta^* \in \mathcal{H}} \left[R_{\mathcal{D}_{\mathcal{S}}}(\eta^*) + R_{\mathcal{D}_{\mathcal{T}}}(\eta^*)\right].$

Empirical risk on the source sample:

$$\mathsf{R}_{\mathcal{S}}(\eta) \stackrel{\text{def}}{=} \frac{1}{m} \sum_{i=1}^{m} I[\eta(\mathbf{x}_{i}^{\mathcal{S}}) \neq \mathbf{y}_{i}^{\mathcal{S}}].$$

Empirical *H*-divergence:

$$\hat{d}_{\mathcal{H}}(\mathbf{S}, \mathcal{T}) \stackrel{\text{def}}{=} 2 \max_{\eta \in \mathcal{H}} \left[\frac{1}{m} \sum_{i=1}^{m} I[\eta(\mathbf{x}_{i}^{\mathbf{S}}) = 1] + \frac{1}{m} \sum_{i=1}^{m} I[\eta(\mathbf{x}_{i}^{t}) = 0] - 1 \right]$$

Pascal Germain (GRAAL)

Theorem (Ben David et al., 2006)

Let \mathcal{H} be a hypothesis class of VC-dimension d. With probability $1 - \delta$ over the choice of samples $S \sim (\mathcal{D}_S)^m$ and $T \sim (\mathcal{D}_T)^m$, for every $\eta \in \mathcal{H}$:

$$R_{\mathcal{D}_{\mathcal{T}}}(\eta) \leq R_{\mathcal{S}}(\eta) + \frac{4}{m}\sqrt{d\log\frac{2e\,m}{d} + \log\frac{4}{\delta}} + \hat{d}_{\mathcal{H}}(\mathcal{S}, \mathcal{T}) + \frac{4}{m^2}\sqrt{d\log\frac{2\,m}{d} + \log\frac{4}{\delta}} + \beta$$

with $\beta \geq \inf_{\eta^* \in \mathcal{H}} [R_{\mathcal{D}_{\mathcal{S}}}(\eta^*) + R_{\mathcal{D}_{\mathcal{T}}}(\eta^*)].$

Target risk $R_{\mathcal{D}_{\mathcal{T}}}(\eta)$ **is low** if, given **S** and **T**,

 $R_{S}(\eta)$ is small, *i.e.*, $\eta \in \mathcal{H}$ is good on

and $\hat{d}_{\mathcal{H}}(S, T)$ is small, *i.e.*, all $\eta' \in \mathcal{H}$ are bad on

Pascal Germain (GRAAL)

Domain-Adversarial Neural Networks

December 13, 2014 6 / 14

Let consider a neural network architecture with one hidden layer

 $\label{eq:hamiltonian} h(x) \; = \; \operatorname{sigm}(b + Wx) \,, \quad \text{ and } \quad f(h(x)) \; = \; \operatorname{softmax}(c + Vh(x)) \,.$

$$\min_{\mathbf{W},\mathbf{V},\mathbf{b},\mathbf{c}} \underbrace{\left[\frac{1}{m}\sum_{i=1}^{m} -\log\left(1-y_{i}^{s}-\mathbf{f}(\mathbf{h}(\mathbf{x}_{i}^{s}))\right)\right]}_{\text{source loss}}.$$

Given a source sample $S = \{(\mathbf{x}_i^s, \mathbf{y}_i^s)\}_{i=1}^m \sim (\mathcal{D}_S)^m$,

- 1. Pick a $\mathbf{x}^{s} \in \mathbf{S}$
- 2. Update **V** towards $f(h(x^s)) = y^s$
- 3. Update **W** towards $f(h(x^s)) = y^s$

The hidden layer learns a **representation** $h(\cdot)$ from which linear hypothesis $f(\cdot)$ can **classify source examples**.

Empirical \mathcal{H} -divergence

$$\hat{d}_{\mathcal{H}}(\mathbf{S}, T) \stackrel{\text{def}}{=} 2 \max_{\eta \in \mathcal{H}} \left[\frac{1}{m} \sum_{i=1}^{m} I[\eta(\mathbf{x}_{i}^{\mathbf{S}}) = 1] + \frac{1}{m} \sum_{i=1}^{m} I[\eta(\mathbf{x}_{i}^{t}) = 0] - 1 \right].$$

We estimate the \mathcal{H} -divergence by a logistic regressor that model the probability that a given input (either x^s or x^t) is from the source domain:

$$o(\mathbf{h}(\mathbf{x})) \stackrel{\text{def}}{=} \operatorname{sigm}(d + \mathbf{w}^{\top} \mathbf{h}(\mathbf{x})).$$

Given a representation output by the hidden layer $h(\cdot)$:

$$\hat{d}_{\mathcal{H}}\left(\mathbf{h}(\mathbf{S}),\mathbf{h}(T)\right) \approx 2 \max_{\mathbf{w},d} \left[\frac{1}{m} \sum_{i=1}^{m} \log\left(o(\mathbf{h}(\mathbf{x}_{i}^{\mathbf{S}}))\right) + \frac{1}{m} \sum_{i=1}^{m} \log\left(1 - o(\mathbf{h}(\mathbf{x}_{i}^{t}))\right) - 1\right].$$

Domain-Adversarial Neural Network (DANN)

where $\lambda > 0$ weights the domain adaptation regularization term.

Given a source sample $S = \{(\mathbf{x}_i^s, \mathbf{y}_i^s)\}_{i=1}^m \sim (\mathcal{D}_S)^m$, and a target sample $T = \{(\mathbf{x}_i^t)\}_{i=1}^m \sim (\mathcal{D}_T)^m$,

- 1. Pick a $\mathbf{x}^{s} \in \mathbf{S}$ and $\mathbf{x}^{t} \in \mathbf{T}$
- 2. Update **V** towards $f(h(x^s)) = y^s$
- 3. Update **W** towards $f(h(x^s)) = y^s$
- 4. Update w towards $o(\mathbf{h}(\mathbf{x}^s)) = 1$ and $o(\mathbf{h}(\mathbf{x}^t)) = 0$
- 5. Update **W** towards $o(\mathbf{h}(\mathbf{x}^s)) = 0$ and $o(\mathbf{h}(\mathbf{x}^t)) = 1$

DANN finds a representation $h(\cdot)$ that are good on *S*; but unable to discriminate between *S* and *T*.

Toy Dataset

Standard Neural Network (NN)

Domain-Adversarial Neural Networks (DANN)

Pascal Germain (GRAAL)

Domain-Adversarial Neural Networks

December 13, 2014

10 / 14

Amazon Reviews

Input: product review (bag of words) — Output: positive or negative rating.

Dataset	DANN	NN
books o dvd	0.201	0.199
$books \to electronics$	0.246	0.251
$books \to kitchen$	0.230	0.235
$dvd \to books$	0.247	0.261
$dvd \to electronics$	0.247	0.256
$dvd \to kitchen$	0.227	0.227
$electronics \to books$	0.280	0.281
$electronics \to dvd$	0.273	0.277
$electronics \to kitchen$	0.148	0.149
$kitchen \to books$	0.283	0.288
$kitchen \to dvd$	0.261	0.261
$kitchen \to electronics$	0.161	0.161

Note: We use a *small labeled subset* of 100 target examples to select the hyperparameters.

Question

Does DANN can be combined with other representation learning techniques for domain adaptation?

The autoencoders mSDA (Chen et al. 2012) provides a new common representation for source and target (unsupervised)

With **mSDA+SVM**, Chen et al. (2012) obtained *state-of-the-art* results on Amazon Reviews:

- Train a linear SVM on mSDA source representations.

We try **mSDA+DANN**:

- Train DANN on source representations and target representations.

Amazon Reviews

Input: product review (bag of words) — Output: positive or negative rating.

Dataset	mSDA+DANN	mSDA+SVM
$books \to dvd$	0.176	0.175
$books \to electronics$	0.197	0.244
$books \to kitchen$	0.169	0.172
$dvd \to books$	0.176	0.176
$dvd \to electronics$	0.181	0.220
$dvd \to kitchen$	0.151	0.178
$electronics \to books$	0.237	0.229
$electronics \to dvd$	0.216	0.261
$electronics \to kitchen$	0.118	0.137
$kitchen \to books$	0.222	0.234
$kitchen \to dvd$	0.208	0.209
kitchen $ ightarrow$ electronics	0.141	0.138

Note: We use a *small labeled subset* of 100 target examples to select the hyperparameters. The *noise parameter* of mSDA representations is fixed to 50%.

Pascal Germain (GRAAL)

Several paths to explore:

- Deeper neural networks architectures.
- Multiclass / Multilabels problems.
- Multisource domain adaptation.

Thank you!