Pascal Germain¹ François Laviolette¹

1

3

GRAAL Machine Learning Research Group

Département d'informatique et de génie logiciel Université Laval, Québec, Canada {pascal.germain,francois.laviolette}@ift.ulaval.ca

Laboratoire Hubert Curien

² Saint-Étienne University, France amaury.habrard@univ-st-etienne.fr

Laboratoire d'Informatique Fondamentale QARMA Group Aix-Marseille University, France emilie.morvant@lif.univ-mrs.fr Amaury Habrard²

Emilie Morvant³

NIPS 2012 Workshop: Multi-Trade-offs in Machine Learning, December 7, 2012

PAC-Bayesian Learning and Domain Adaptation

Outline

- Domain Adaptation
 - Problem Description
 - A Classical Domain Adaptation Bound
 - A New Domain Adaptation Bound
- PAC-Bayesian Learning
 - PAC-Bayesian Learning of Linear Classifier
 - PAC-Bayesian Domain Adaptation Learning of Linear Classifiers
- **3** Preliminary Experimental Results

Domain Adaptation (DA) : Problem Description

When we need DA

The Learning distribution is different from the Testing distribution.

An example of a DA problem

- We have labeled images from a Web image corpus
- Is there a Person in unlabeled images from a Video corpus ?

Person

no Person

Is there a Person ?

 \Rightarrow How to learn, from the source domain, a low-error classifier on the target one ?

Domain Adaptation (DA) : Problem Description

Supervised Classification

- We consider binary classification task: X input space, $Y = \{-1, 1\}$ label set
- P_S source domain: distribution over $X \times Y$; D_S marginal distribution over X
- $S \sim (P_S)^m$ a labeled source sample
- \implies **Objective:** Find a classifier $h \in \mathcal{H}$ with a **low source risk** $R_{P_S}(h)$.

Domain Adaptation

- P_T target domain: distribution over $X \times Y$; D_T marginal distribution over X
- $T \sim (D_T)^{m'}$ a unlabeled target sample

 \implies **Objective:** Find a classifier $h \in \mathcal{H}$ with a **low target risk** $R_{P_T}(h)$.

A Classical Domain Adaptation Bound (VC-dim approach)

• Let ${\mathcal H}$ be an hypothesis space.

Theorem [Ben-David et al., 2010]

For every $h \in \mathcal{H}$ and for all $\delta \in]0,1]$, with probability at least $1-\delta$:

$$R_{P_T}(h) \leq R_{P_S}(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_S, D_T) + \lambda,$$

with $\lambda = \min_{h^* \in \mathcal{H}} \left(R_{P_S}(h^*) + R_{P_T}(h^*) \right)$.

Trade-off between:

 \square $R_{P_{S}}(h)$ is the classical expected error on the source domain

 $\Box d_{\mathcal{H}\Delta\mathcal{H}}(D_S, D_T)$ is the $\mathcal{H}\Delta\mathcal{H}$ -distance between source and target domains

 $d_{\mathcal{H}\Delta\mathcal{H}}(D_{\mathcal{S}},D_{\mathcal{T}}) = 2 \sup_{h,h' \in \mathcal{H}\Delta\mathcal{H}} \left| \Pr_{\mathbf{x} \sim D_{\mathcal{S}}}(h(\mathbf{x}) \neq h'(\mathbf{x})) - \Pr_{\mathbf{x} \sim D_{\mathcal{T}}}(h(\mathbf{x}) \neq h'(\mathbf{x})) \right|$

A New Domain Adaptation Bound (PAC-Bayesian approach)

- Let \mathcal{H} be an hypothesis space.
- Given a weight distribution $\rho \sim \mathcal{H}$, we study the ρ -average errors:

$$R_{P_S}(G_{\rho}) = \mathop{\mathbf{E}}_{h \sim \rho} R_{P_S}(h), \qquad R_{P_T}(G_{\rho}) = \mathop{\mathbf{E}}_{h \sim \rho} R_{P_T}(h).$$

Theorem

For all $\delta \in [0, 1]$, with probability at least $1 - \delta$, for every posterior distribution ρ :

$$\underset{h\sim\rho}{\overset{\mathbf{E}}{\overset{}}} \frac{R_{P_{T}}(h) \leq \underset{h\sim\rho}{\overset{\mathbf{E}}{\overset{}}} R_{P_{S}}(h) + \operatorname{dis}_{\rho}(D_{S}, D_{T}) + \lambda_{\rho},$$
with $\lambda_{\rho} = R_{P_{S}}(h^{*}) + R_{P_{T}}(h^{*})$, and $h^{*} = \underset{h\in\mathcal{H}}{\operatorname{argmin}} \left\{ \underset{h'\sim\rho}{\overset{\mathbf{E}}{\overset{}}} (R_{D_{T}}(h, h') - R_{D_{S}}(h, h')) \right\}.$

Domain disagreement: dis_{ρ} $(D_S, D_T) = \underset{h_1, h_2 \sim \rho^2}{\mathsf{E}} \left[\underset{x \sim D_S}{\Pr} (h(x) \neq h'(x)) - \underset{x \sim D_T}{\Pr} (h(x) \neq h'(x)) \right].$

Given empirical observations $S \sim (P_S)^m$ and $T \sim (D_S)^{m'}$, \Rightarrow We want to minimize : $B_{P_{\langle S,T \rangle}}(G_\rho) \stackrel{\text{def}}{=} R_{P_S}(G_\rho) + \operatorname{dis}_{\rho}(D_S, D_T)$, where $P_{\langle S,T \rangle}$ denotes the joint distribution over $P_S \times D_T$.

PAC-Bayesian Learning of Linear Classifier

[Germain, Lacasse, Laviolette and Marchand, 2009]

- Let \mathcal{H} be a set of linear classifiers $h_{\mathbf{v}}(\mathbf{x}) \stackrel{\text{def}}{=} \operatorname{sgn}(\mathbf{v} \cdot \mathbf{x})$
- Consider a prior π_0 and a posterior ρ_w defined as isotropic Gaussians respectively centered on vectors **0** and **w**.

Theorem [Langford and Shawe-Taylor, 2002]

For any domain $P_S \subseteq \mathbb{R}^d \times Y$ and any $\delta \in (0, 1]$, we have,

$$\Pr_{S\sim (P_S)^m} \left(\forall \mathbf{w} \in \mathbb{R}^d : \operatorname{kl}\left(R_S(\mathcal{G}_{\rho_{\mathbf{w}}}) \, \| \, R_{P_S}(\mathcal{G}_{\rho_{\mathbf{w}}})\right) \leq \frac{1}{m} \left[\operatorname{KL}(\rho_{\mathbf{w}} \, \| \, \pi_{\mathbf{0}}) + \ln \frac{\xi(m)}{\delta} \right] \right) \geq 1 - \delta.$$

PAC-Bayesian Domain Adaptation Learning of Linear Classifier

Given empirical observations $S \sim (P_S)^m$ and $T \sim (D_S)^{m'}$, \Rightarrow We want to minimize : $B_{P_{\langle S,T \rangle}}(G_\rho) \stackrel{\text{def}}{=} R_{P_S}(G_\rho) + \text{dis}_{\rho}(D_S, D_T)$, where $P_{\langle S,T \rangle}$ denotes the joint distribution over $P_S \times D_T$.

Theorem

For any domain $P_{\langle S, T \rangle} \subseteq \mathbb{R}^d \times Y \times \mathbb{R}^d$ and any $\delta \in (0, 1]$, we have,

$$\Pr_{\langle S,T\rangle\sim(P_{\langle S,T\rangle})^{m}}\left(\forall \mathbf{w}\in\mathbb{R}^{d}:\mathrm{kl}\left(B_{\langle S,T\rangle}^{*}\left\|B_{P_{\langle S,T\rangle}}^{*}\right)\leq\frac{1}{m}\left[2\mathrm{KL}(\rho_{\mathbf{w}}\|\pi_{0})+\ln\frac{\xi(m)}{\delta}\right]\right)\geq1-\delta,$$
where $B_{P_{\langle S,T\rangle}}(G_{\rho_{\mathbf{w}}})=R_{P_{S}}(G_{\rho_{\mathbf{w}}})+\mathrm{dis}_{\rho_{\mathbf{w}}}(D_{S},D_{T}).$

Trade-off between:

$$R_{P_{S}}(G_{\rho_{\mathbf{w}}}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi\left(y^{s} \frac{\mathbf{w} \cdot x^{s}}{\|x^{s}\|}\right)$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{s}}{\|x^{s}\|}\right) - \underset{x^{t} \sim D_{T}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

$$dis_{\rho_{\mathbf{w}}}(D_{S}, D_{T}) = \underset{(x^{s}, y^{s}) \sim P_{S}}{\mathbf{E}} \Phi_{dis}\left(\frac{\mathbf{w} \cdot x^{t}}{\|x^{t}\|}\right) \xrightarrow{0.8} 0.4$$

Preliminary Experimental Results

Bound minimization by gradient descent

Illustration of the decision boundary on 4 rotations angles:

Rotation angle	20°	30°	40°	50°
PBGD	99.5	89.8	78.6	60
SVM	89.6	76	68.8	60
TSVM	100	78.9	74.6	70.9
DASVM	100	78.4	71.6	66.6
DASF	98	92	83	70
DA-PBGD	97.7	97.6	97.4	53.2

Thank you!

See you at our poster.