A New PAC-Bayesian Perspective on Domain Adaptation

Pascal Germain¹

Amaury Habrard² François Laviolette³ Emilie Morvant²

¹ INRIA Paris – SIERRA Project-Team École Normale Supérieure, Paris, France

² Laboratoire Hubert Curien University of Saint-Étienne, France

³ Département d'informatique et génie logiciel – GRAAL Université Laval, Québec, Canada

> ICML NEW YORK June 20, 2016

Unsupervised Domain Adaptation Problem

Binary Classification

- Input space: X
- Labels: $Y = \{-1, +1\}$

Two different data distributions

- Source domain: S
- Target domain: T

A domain adaptation learning algorithm is provided with

The goal is to build a classifier $h: \mathbf{X} \rightarrow Y$ with a low target risk:

$$\widehat{\mathsf{R}}_{\mathcal{T}}(h) := \Pr_{\mathcal{T}}\left(h(\mathbf{x}) \neq y\right) = \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim\mathcal{T}} \mathrm{I}\left[h(\mathbf{x})\neq y\right].$$

$$(\mathrm{I}\left[\cdot\right] \text{ is the indicator function}\right)$$

$$(\mathrm{I}\left[\cdot\right] = \mathrm{I}\left[h(\mathbf{x}) \neq y\right].$$

Previous Approaches

Let \mathcal{H} be a hypothesis class.

Our First PAC-Bayesian domain adaptation theorem (ICML 2013)

For all distribution ρ over \mathcal{H} :

$$\mathbf{E}_{h\sim\rho}^{\mathsf{R}_{\mathcal{T}}}(h) \leq \underbrace{\mathbf{E}_{(h,h')\sim\rho^{2}}^{\mathsf{source}}\left(\mathbf{E}_{(x\sim\mathcal{S}_{\mathsf{X}}}^{\mathsf{I}}I[h(\mathsf{x})\neq h'(\mathsf{x})] - \mathbf{E}_{\mathsf{x}\sim\mathcal{T}_{\mathsf{X}}}^{\mathsf{I}}I[h(\mathsf{x})\neq h'(\mathsf{x})]\right)}_{\mathsf{x}\sim\mathcal{T}_{\mathsf{X}}} + \underbrace{\lambda_{\rho}}_{\mathsf{term}}^{\mathsf{non-estimable}}\left(\mathbf{E}_{(h,h')\sim\rho^{2}}\left(\mathbf{E}_{(x\sim\mathcal{S}_{\mathsf{X}}}^{\mathsf{I}}I[h(\mathsf{x})\neq h'(\mathsf{x})] - \mathbf{E}_{\mathsf{x}\sim\mathcal{T}_{\mathsf{X}}}^{\mathsf{I}}I[h(\mathsf{x})\neq h'(\mathsf{x})]\right)\right)}_{\mathsf{x}\sim\mathcal{T}_{\mathsf{X}}}$$

- **Pro:** The divergence supremum is replaced by a ρ -average. We learned ρ .
- **Con:** The non-estimable term λ_{ρ} relies on ρ . We have to ignore it.

New Approach : Expected Risk Decomposition

Observation

(Lacasse, Laviolette, Marchand, Germain, Usunier, 2006)

$$\mathbf{E}_{\substack{h \sim \rho}}^{\mathbf{E}} \mathbf{R}_{\mathcal{T}}(h) = \frac{1}{2} \underbrace{\mathbf{d}_{\mathcal{T}_{\mathbf{X}}}(\rho)}_{\text{d}_{\mathcal{T}_{\mathbf{X}}}(\rho)} + \underbrace{\mathbf{e}_{\mathcal{T}}(\rho)}_{\mathbf{e}_{\mathcal{T}}(\rho)},$$

where, considering $h \sim \rho$ and $h' \sim \rho$,

$$\mathbf{d}_{\mathcal{T}_{\mathbf{X}}}(\rho) \coloneqq \Pr_{\mathcal{T}}\left(h(\mathbf{x}) \neq h'(\mathbf{x})\right) \qquad \qquad = \underset{\mathbf{x} \sim \mathcal{T}_{\mathbf{X}}}{\mathbf{E}} \underset{(h,h') \sim \rho^{2}}{\mathbf{E}} \mathbf{I}[h(\mathbf{x}) \neq h'(\mathbf{x})],$$

$$\mathbf{e}_{\mathcal{T}}(\rho) \coloneqq \Pr_{\mathcal{T}}\left(h(\mathbf{x}) \neq y \land h'(\mathbf{x}) \neq y\right) = \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim\mathcal{T}} \mathop{\mathbf{E}}_{(h,h')\sim\rho^2} \mathbf{I}[h(\mathbf{x})\neq y]\mathbf{I}[h'(\mathbf{x})\neq y].$$

We can estimate $\mathbf{d}_{\mathcal{T}_{\mathbf{X}}}(\rho)$ from a target sample, but we cannot estimate $\mathbf{e}_{\mathcal{T}}(\rho)$ (since it relies on target labels).

New Approach : Joint Error and Domain Divergence

where

and

$$\beta_{q}(\mathcal{T}||\mathcal{S}) := \left[\underbrace{\mathsf{E}}_{(\mathsf{x},y)\sim\mathcal{S}} \left(\underbrace{\mathcal{T}(\mathsf{x},y)}_{\text{weight ratio}} \right)^{q} \right]^{\frac{1}{q}} \in [1,\infty),$$
$$\eta_{\mathcal{T}\setminus\mathcal{S}} := \underbrace{\Pr}_{\mathcal{T}} \left((\mathsf{x},y) \notin \text{SUPPORT}(\mathcal{S}) \right)_{\text{target area}} \times \underbrace{\sup_{h \in \mathcal{H}} \mathsf{R}_{\mathcal{T}\setminus\mathcal{S}}(h)}_{\text{worst risk}}$$

A New Trade-Off for Domain Adaptation

Breaks the adaptation trade-off into an atypical trade-off:

- 1. Unlabeled information $d_{\mathcal{T}_{X}}(\rho)$ from the target domain;
- 2. Labeled information $\mathbf{e}_{\mathcal{S}}(\rho)$ from the source domain, weighted by the source-target divergence $\beta_q(\mathcal{T}||\mathcal{S})$ (under the choice of parameter q);
- Worst feasible target error η_{T\S} in regions where the source domain is uninformative;
 - \Rightarrow Non-estimable but constant term, does not depend on ρ ;
 - \Rightarrow Should be reasonably small when adaptation is achievable.

Special Case

With $q \rightarrow \infty$

For all ρ on $\mathcal H$:

Linear trade-off between $\mathbf{d}_{\mathcal{T}_{\mathbf{X}}}(\rho)$ and $\mathbf{e}_{\mathcal{S}}(\rho)$:

- ⇒ In the covariate shift setting, $\beta_{\infty}(\mathcal{T} \| \mathcal{S}) = \sup_{\mathbf{x}} \frac{\mathcal{T}(\mathbf{x})}{\mathcal{S}(\mathbf{x})}$ can be estimated from learning samples;
- \Rightarrow We consider $\beta_{\infty}(\mathcal{T}||\mathcal{S})$ as a parameter to tune.

New PAC-Bayesian Domain Adaptation Theorem

For any prior π over \mathcal{H} , any $\delta \in (0, 1]$, any real numbers b > 1 and c > 1, with a probability at least $1-\delta$ over the choices of $S \sim (S)^m$ and $T \sim (\mathcal{T}_X)^{m'}$, we have

 $\forall \rho \text{ on } \mathcal{H},$

Learning algorithm for Linear Classifiers

As many PAC-Bayesian works (since Langford and Shawe-Taylor, 2002):
We consider the set *H* of all linear classifiers h_v in X := ℝ^d:

$$h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sign}(\mathbf{v} \cdot \mathbf{x}).$$

• Let $\rho_{\mathbf{w}}$ on \mathcal{H} be a Gaussian distribution centered on \mathbf{w} (with $\Sigma = \mathbf{I}_d$):

$$h_{\mathsf{w}}(\mathsf{x}) = \operatorname{sign}\left[\mathop{\mathsf{E}}_{\mathsf{v} \sim
ho_{\mathsf{w}}} h_{\mathsf{v}}(\mathsf{x})
ight].$$

Given $T = {\mathbf{x}_i\}_{i=1}^{m'} \text{ and } \mathbf{S} = {(\mathbf{x}_j, y_j)}_{j=1}^m$, find $\mathbf{w} \in \mathbb{R}^d$ that minimizes: $C \times \widehat{\mathbf{d}}_T(\rho_{\mathbf{w}}) + B \times \widehat{\mathbf{e}}_{\mathbf{S}}(\rho_{\mathbf{w}}) + \operatorname{KL}(\rho_{\mathbf{w}} \| \pi_0).$ $\lim_{\frac{1}{m'} \sum_i \Phi_{\operatorname{dis}}\left(\frac{\mathbf{w} \cdot \mathbf{x}_i}{\|\mathbf{x}_i\|}\right) = \lim_{m} \sum_j \Phi_{\operatorname{err}}\left(y_j \frac{\mathbf{w} \cdot \mathbf{x}_j}{\|\mathbf{x}_j\|}\right) = \frac{1}{2} \|\mathbf{w}\|^2$

- RBF kernel
- B = 1
- *C* = 1

Empirical results on Amazon Dataset

- Linear kernel
- Hyper-parameter selection by reverse cross-validation

	SVM	DASVM	CODA	ICML2013	ICML2016
books→DVDs	0.179	0.193	0.181	0.183	0.178
books→electro	0.290	0.226	0.232	0.263	0.212
books→kitchen	0.251	0.179	0.215	0.229	0.194
DVDs→books	0.203	0.202	0.217	0.197	0.186
DVDs→electro	0.269	0.186	0.214	0.241	0.245
DVDs→kitchen	0.232	0.183	0.181	0.186	0.175
$electro{ o}books$	0.287	0.305	0.275	0.232	0.240
$electro \rightarrow DVDs$	0.267	0.214	0.239	0.221	0.256
$electro \rightarrow kitchen$	0.129	0.149	0.134	0.141	0.123
kitchen $ ightarrow$ books	0.267	0.259	0.247	0.247	0.236
kitchen \rightarrow DVDs	0.253	0.198	0.238	0.233	0.225
$kitchen{\rightarrow}electro$	0.149	0.157	0.153	0.129	0.131
Average	0.231	0.204	0.210	0.208	0.200

Germain, Habrard, Laviolette, Morvant

Conclusion

Highlights

- We introduced a new domain adaptation trade-off, relying on:
 - the target disagreement $d_{\mathcal{T}_{\mathsf{X}}}$;
 - the source joint error $\mathbf{e}_{\mathcal{S}}$;
 - \Rightarrow Weighted by the domain divergence $\beta_q(\mathcal{T}||\mathcal{S})$.
- We designed a learning algorithm minimizing a PAC-Bayesian guarantee.

Future Work

Explore the covariate-shift setting:

- Estimate the domain divergence $\beta_q(\mathcal{T} \| \mathcal{S})$
 - ⇒ Could motivate an *instance reweighting approach*.
- Estimate the "area" covered by the unknown term $\eta_{T \setminus S}$
 - ⇒ Could be reduced by *learning a new representation*.

Poster Tuesday morning

– Thank you!

Germain, Habrard, Laviolette, Morvant New PAC-Bayesian Domain Adaptation

June 20, 2016 12 / 12