PAC-Bayesian Theory Meets Bayesian Inference
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Spoiler: Under the negative log-likelihood loss function, the minimization of PAC-Bayesian generalization bounds maximizes the Bayesian marginal likelihood. ‘

PAC-

BAYESIAN THEORY
The PAC-Bayesian theory claims to provide “PAC guarantees to

Bayesian algorithms” (McAllester, 1999).
as a frequentist method.

However, it is mostly used

Under a frequentist assumption...
The training set (X,Y") contains n 4.i.d. samples from a data distribution D.

...PAC-Bayes provides Probably Approximately Correct bounds...

, the loss of predictor f is less than “z7,

(ﬁn(ﬂ < (Ex.) (f),n, 5,“.))

...to Bayesian-like (averaged) predictors.

Given a prior 7 and a posterior p over a class of predictors F,

([BLo() < (B Ly (/) aKLxp)...))
~p ~
where KL(7||p) is the Kullback-Leibler divergence between 7 and p.

Two appealing aspects of PAC-Bayesian guarantees:

1. Data-driven generalization bounds computed on the training sample
(i.e., they do not rely on a testing sample) ;

2. Uniformly valid for all posteriors p over predictors class F
(can be used as model selection criteria or optimized by a learning algorithm).

ESIAN THEOREM FOR BOUNDED LOSSES

Given a loss function /(f,z.y) € [a,b], a predictor f € F, a data distribution D,
and a sample (X,Y) = {(z;, i}y ~ D",

Lp(f) = . Dﬁ(f,;z‘,y); Exy(f) = %Z[([.m,,yl)‘
Z,5)~ pat
Theorem ( **°k Catoni, 2007). ,
b a- E Lxy(f)-L(kLpim+md
VponF: B Ln(f) < a+17“, l—e f~p l )
s g

The bound suggests minimizing the following trade-off:

n E Lyy(f)+KL(p||m).
Ir~p

BAYESIAN MODEL SELECTION

. From Ghahramani's talk
Bayesian Rule.

Consider a parameter set ©.

POIm)

Forall ) € ©:
p(0) p(Y|X,0)
pAX)Y) = ————"~
( I ) p<y ‘X) All possible data sets of size n
e p(0|X,Y) is the posterior for each 6 € © (similar to p over F)

(similar to 7 over F)

P
e p(0) is the prior for each 6 € ©
p(Y|X,0) is the likelihood of the parameter 6 given the sample X, Y.
(

e p(Y|X) is the marginal likelihood of ©.

BRIDGING BAYES AND PAC-BAYES

Negative log-likelihood loss function

Given a Bayesian likelihood p(Y|X,0), let

Can(0,z,y) = In

_1

p(ylz.,0) *

The PAC-Bayesian and Bayesian posteriors align:
71,(9) e—n[ ““(0)

+(9) — _
p(0) Ty

p(6) p(X.Y]6)
p(VX)

=p(0]1X,Y)

PAC-Bayesian posterior Bayesian posterior

The normalization constant is to the Bayesian marginal likelihood:

Zxy = p(Y|X) = /ﬂ<9) e EXL ) gg.
JO

Moreover,

~InZxy =n E L& (0) + KL(p*||7) .
~p*

Thus, the following gives a PAC-Bayesian result based on the
marginal likelihood Zxy of the optimal posterior /.

Corollary. If £,(-)€[a, b],
E L3'(0) <

o>

AN LINEAR REGRESSION

PAC-

BAYESIAN THEOREM FOR UNBOUNDED LOSSES
Theorem (Alquier, Ridgway, Chopin, 2015). Let A > 0.

VoonF: E Lp(f) < E EA)\;y(f)+1[KL(/3H7T)+1nl+\IA m/\.//\:|,
I~p f~p A J
where W, p(A.n) = In f]~31r X{yy]IEND" exp {)\ (Lp(f) - Ex/,y/(f))] .

Sub-gamma losses. The loss function / is sub-gamma with a variance fac-

tor s? and scale parameter ¢, under a prior 7 and a data distribution D, if

1t can be described by a sub-gamma random variable V' = Lp(f) — ¢(f, , y)
e., its moment generating function is upper bounded by

AV _ A%
InEe —lnf]:]ﬂ(xvg*)]NDexp[)\(llD(f) U f,z,y)] < =) -

YA€ (0,1).
Corollary. If the loss is sub-gamma with variance factor s and scale ¢ < 1,
we have,

Voon Fi B Lo(f) < E Lxy(f) + L [KL(p|m) + In}] + 575 5>
~p

= feb

As a special case, with £ := {,; and p := p*, we have

E L) < g — 2 (Zxy 0).

Consider a discrete set of L models {M;}L | with parameters {©;}£; .

(PAC-)Bayesian Rule. For each model, the optimal posterior is

p(6| M)

p(Y|X,0,M;)
p(YX, M;) '

p(Y|X,M;) = / p(0|M;) p(Y[X, 0, M;) df = Zx v, is the model evidence.
[C]

i

Corollary. s

Vie{l,...,L} : E £(0) < ﬁszfiln(Zx_yJ%).

Provide a new interpretation of the Bayesian Occam’s razor criteria!
To improve bounds, perform model averaging ( = hierarchical Bayes.)

We consider a mapping function ¢ : R — R, model parameters 6 := w € R?, and noise o.
Under the likelihood p(y|z, w) = N (y|w-¢(x), 0?), the negative log-likelihood loss function is
tan(w,2,9) = —Inp(ylz,w) = 4 In(2r0%) + 7 (y - w- $(a))?

N(0,0-I). the optimal posterior is given by

, The negative log marginal likelihood is

For the Gaussian prior p(wlor) =
p(wlo,0x) = N(w|w, A7)
—InZxy = nL Lo (w)

s tr(@T @A) + 57 tr(A™Y) —

o £y P
N E gy oL 2 (w) KL(N(%,471) | N'(0,021))

44 ﬁHWHQ + log|A| +dInos .
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Comparison of bound values
—e— Alquier et al's [a, b] bound (Theorem 3 + Eq 14)
—e— Catoni's [a,b] bound (Corollary 2)

30 —e— sub-gamma bound (Corollary 5)

wemer By L3(0) (test loss)
- —a By B45(0) (train loss)
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