

# PAC-Bayesian Theory Meets Bayesian Inference

Pascal Germain<sup>†</sup>, Francis Bach<sup>†</sup>, Alexandre Lacoste<sup>‡</sup>, Simon Lacoste-Julien<sup>†</sup>

 $^\dagger$  INRIA Paris - École Normale Supérieure  $\hfill \ensuremath{\stackrel{\pm}{}}$  Google



Spoiler: Under the negative log-likelihood loss function, the minimization of PAC-Bayesian generalization bounds maximizes the Bayesian marginal likelihood.

### PAC-BAYESIAN THEORY

The PAC-Bayesian theory claims to provide "PAC guarantees to Bayesian algorithms" (McAllester, 1999). However, it is mostly used as a *frequentist* method.

#### Under a frequentist assumption...

The training set (X,Y) contains n *i.i.d.* samples from a data distribution  $\mathcal{D}$ .

...PAC-Bayes provides Probably Approximately Correct bounds...

With probability at least " $1-\delta$ ", the loss of predictor f is less than " $\varepsilon$ ",

$$\Pr_{X,Y\sim\mathcal{D}^n}\left(\mathcal{L}_{\mathcal{D}}(f)\leq \varepsilon(\widehat{\mathcal{L}}_{X,Y}(f),n,\delta,\ldots)\right)\geq 1-\delta.$$

#### ...to Bayesian-like (averaged) predictors.

Given a prior  $\pi$  and a posterior  $\hat{\rho}$  over a class of predictors  $\mathcal{F}\,,$ 

 $\Pr_{X,Y\sim\mathcal{D}^n}\left(\mathop{\mathbf{E}}_{f\sim\hat{\rho}}\mathcal{L}_{\mathcal{D}}(f)\leq \varepsilon\left(\mathop{\mathbf{E}}_{f\sim\hat{\rho}}\widehat{\mathcal{L}}_{X,Y}(f),n,\delta,\mathrm{KL}(\pi\|\hat{\rho}),\ldots\right)\right)\geq 1-\delta.$ 

where  $\text{KL}(\pi \| \hat{\rho})$  is the **Kullback-Leibler divergence** between  $\pi$  and  $\hat{\rho}$ .

#### Two appealing aspects of PAC-Bayesian guarantees:

- 1. Data-driven generalization bounds computed on the training sample (*i.e.*, they do not rely on a testing sample);
- Uniformly valid for all posteriors ρ̂ over predictors class F
  (can be used as model selection criteria or optimized by a learning algorithm).

## PAC-BAYESIAN THEOREM FOR BOUNDED LOSSES

Given a loss function  $\ell(f, x, y) \in [a, b]$ , a predictor  $f \in \mathcal{F}$ , a data distribution  $\mathcal{D}$ , and a sample  $(X, Y) = \{(x_i, y_i\}_{i=1}^n \sim \mathcal{D}^n,$ 

$$\mathcal{L}_{\mathcal{D}}(f) := \underbrace{\mathbf{E}}_{(x,y)\sim\mathcal{D}} \ell(f,x,y); \quad \widehat{\mathcal{L}}_{X,Y}(f) := \frac{1}{n} \sum_{i=1}^{n} \ell(f,x_i,y_i).$$

Theorem ( <sup>adapted</sup> from Catoni, 2007). With probability at least  $1-\delta$  over  $(X,Y) \sim \mathcal{D}^n$ ,

$$\forall \hat{\rho} \text{ on } \mathcal{F} : \quad \mathop{\mathbf{E}}_{f \sim \hat{\rho}} \mathcal{L}_{\mathcal{D}}(f) \, \leq \, a + \frac{b - a}{1 - e^{a - b}} \left[ 1 - e^{a - \mathop{\mathbf{E}}_{f \sim \hat{\rho}} \widehat{\mathcal{L}}_{X,Y}(f) - \frac{1}{n} \left( \operatorname{KL}(\hat{\rho} \| \pi) + \ln \frac{1}{\delta} \right)} \right]$$

The bound suggests minimizing the following trade-off:

$$n \mathop{\mathbf{E}}_{f \sim \hat{\rho}} \widehat{\mathcal{L}}_{X,Y}(f) + \mathrm{KL}(\hat{\rho} \| \pi) \,.$$

## BAYESIAN MODEL SELECTION

Bayesian Rule. Consider a parameter set  $\Theta$ . For all  $\theta \in \Theta$ :  $p(\theta|X,Y) = \frac{p(\theta) p(Y|X,\theta)}{p(Y|X)}$ 

- $p(\theta|X,Y)$  is the posterior for each  $\theta \in \Theta$  (similar to  $\hat{\rho}$  over  $\mathcal{F}$ )
- $p(\theta)$  is the prior for each  $\theta \in \Theta$
- $p(Y|X,\theta)$  is the *likelihood* of the parameter  $\theta$  given the sample X, Y.

(similar to  $\pi$  over  $\mathcal{F}$ )

• p(Y|X) is the marginal likelihood of  $\Theta$ .

### BRIDGING BAYES AND PAC-BAYES

Negative log-likelihood loss function Given a Bayesian likelihood  $p(Y|X, \theta)$ , let

$$\ell_{\text{nll}}(\theta, x, y) = \ln \frac{1}{p(y|x, \theta)}.$$

The PAC-Bayesian and Bayesian posteriors align:

$$\underbrace{\hat{\rho}^{*}(\theta) = \frac{\pi(\theta) \, e^{-n \, \widehat{\mathcal{L}}_{X,Y}^{\ell_{\mathrm{nll}}(\theta)}}{Z_{X,Y}}}_{\text{PAC-Bayesian posterior}} = \underbrace{\frac{p(\theta) \, p(X,Y|\theta)}{p(Y|X)} = p(\theta|X,Y)}_{\text{Bayesian posterior}} \, .$$

The normalization constant *is* to the Bayesian *marginal likelihood*:

$$Z_{X,Y} = p(Y|X) = \int_{\Theta} \pi(\theta) e^{-n \widehat{\mathcal{L}}_{X,Y}^{\ell_{\mathrm{nll}}}(\theta)} d\theta.$$

Moreover,

$$-\ln \frac{\mathbf{Z}_{\mathbf{X},\mathbf{Y}}}{\mathbf{Z}_{\mathbf{X},\mathbf{Y}}} \; = \; n \; \mathop{\mathbf{E}}_{\theta \sim \hat{\rho}^*} \widehat{\mathcal{L}}_{X,Y}^{\,\ell_{\mathrm{nll}}}(\theta) + \mathrm{KL}(\hat{\rho}^* \| \pi) \, .$$

Thus, the following gives a PAC-Bayesian result based on the marginal likelihood  $Z_{X,Y}$  of the optimal posterior  $\hat{\rho}^*$ .

**Corollary.** If  $\ell_{\text{nll}}(\cdot) \in [a, b]$ , with probability at least  $1-\delta$  over  $(X, Y) \sim \mathcal{D}^n$ ,

$$\mathop{\mathbf{E}}_{\theta\sim\hat{\rho}^*}\mathcal{L}^{\ell_{\mathrm{nll}}}_{\mathcal{D}}(\theta) \;\leq\; a+\tfrac{b-a}{1-e^{a-b}}\left[1-e^a\sqrt[n]{Z_{X,Y}\delta}\right].$$

#### PAC-BAYESIAN THEOREM FOR UNBOUNDED LOSSES

Theorem (Alquier, Ridgway, Chopin, 2015). Let  $\lambda > 0$ . With probability at least  $1-\delta$  over  $(X, Y) \sim \mathcal{D}^n$ ,

$$\begin{aligned} & \not \hat{\rho} \text{ on } \mathcal{F} \colon \quad \mathbf{\underline{E}}_{f \sim \hat{\rho}} \mathcal{L}_{\mathcal{D}}(f) \leq \mathbf{\underline{E}}_{f \sim \hat{\rho}} \widehat{\mathcal{L}}_{X,Y}(f) + \frac{1}{\lambda} \bigg[ \mathrm{KL}(\hat{\rho} \| \pi) + \ln \frac{1}{\delta} + \Psi_{\ell,\pi,\mathcal{D}}(\lambda, n) \bigg] \\ & \text{ where } \quad \Psi_{\ell,\pi,\mathcal{D}}(\lambda, n) = \ln \mathbf{\underline{E}}_{f \sim \pi} \mathbf{\underline{E}}_{Y|Y_{\ell},\mathcal{D}n} \exp \left[ \lambda \left( \mathcal{L}_{\mathcal{D}}(f) - \widehat{\mathcal{L}}_{X',Y'}(f) \right) \right]. \end{aligned}$$

**Sub-gamma losses.** The loss function  $\ell$  is sub-gamma with a variance factor  $s^2$  and scale parameter c, under a prior  $\pi$  and a data distribution  $\mathcal{D}$ , if it can be described by a sub-gamma random variable  $V = \mathcal{L}_{\mathcal{D}}(f) - \ell(f, x, y)$ , *i.e.*, its moment generating function is upper bounded by

$$\ln \mathbf{E} \, e^{\lambda V} = \ln \mathbf{E}_{f \sim \pi} \mathbf{E}_{(x,y) \sim \mathcal{D}} \exp \left[ \lambda \left( \mathcal{L}_{\mathcal{D}}(f) - \ell(f, x, y) \right) \right] \leq \frac{\lambda^2 s^2}{2(1 - c\lambda)} \,, \quad \forall \lambda \in (0, \frac{1}{c})$$

**Corollary.** If the loss is sub-gamma with variance factor  $s^2$  and scale c < 1, we have, With probability at least  $1-\delta$  over  $(X,Y)\sim \mathcal{D}^n$ ,

$$\forall \hat{\rho} \text{ on } \mathcal{F} \colon \quad \mathbf{\underline{E}}_{f \sim \hat{\rho}} \mathcal{L}_{\mathcal{D}}(f) \leq \mathbf{\underline{E}}_{f \sim \hat{\rho}} \widehat{\mathcal{L}}_{X,Y}(f) + \frac{1}{n} \left[ \mathrm{KL}(\hat{\rho} \| \pi) + \ln \frac{1}{\delta} \right] + \frac{1}{2(1-c)} s^2 \,.$$

As a special case, with  $\ell := \ell_{nll}$  and  $\hat{\rho} := \hat{\rho}^*$ , we have

$$\mathbf{E}_{\sim \hat{\rho}^*} \mathcal{L}_{\mathcal{D}}^{\ell_{\mathrm{nll}}}(\theta) \leq \frac{s^2}{2(1-c)} - \frac{1}{n} \ln \left( \mathbb{Z}_{X,Y} \, \delta \right).$$

## ANALYSIS OF MODEL SELECTION

p(

Consider a discrete set of L models  $\{\mathcal{M}_i\}_{i=1}^L$  with parameters  $\{\Theta_i\}_{i=1}^L$ . (PAC-)Bayesian Rule. For each model, the optimal posterior is

$$\hat{\rho}_{i}^{*}(\theta) = p(\theta|X, Y, \mathcal{M}_{i}) = \frac{p(\theta|\mathcal{M}_{i}) p(Y|X, \theta, \mathcal{M}_{i})}{p(Y|X, \mathcal{M}_{i})}.$$

$$Y|X, \mathcal{M}_{i}) = \int_{\Theta} p(\theta|\mathcal{M}_{i}) p(Y|X, \theta, \mathcal{M}_{i}) d\theta = Z_{X,Y,i} \text{ is the model evidence.}$$

**Corollary.** With probability at least  $1-\delta$  over  $(X, Y) \sim \mathcal{D}^n$ ,

$$\forall i \in \{1, \dots, L\} : \qquad \underset{\theta \sim \hat{\rho}_i^*}{\mathbf{E}} \mathcal{L}_{\mathcal{D}}^{\ell_{\mathrm{nll}}}(\theta) \leq \frac{1}{2(1-c)} s^2 - \frac{1}{n} \ln \left( \mathbb{Z}_{\mathbf{X}, \mathbf{Y}, \mathbf{i}} \frac{\delta}{L} \right)$$

**Provide a new interpretation of the Bayesian Occam's razor criteria!** To improve bounds, perform model averaging ( $\Rightarrow$  *hierarchical Bayes.*)



EXPERIMENTS WITH BAYESIAN LINEAR REGRESSION

We consider a mapping function  $\boldsymbol{\phi} : \mathbb{R} \to \mathbb{R}^d$ , model parameters  $\theta \coloneqq \mathbf{w} \in \mathbb{R}^d$ , and noise  $\sigma$ . Under the likelihood  $p(y|x, \mathbf{w}) = \mathcal{N}(y|\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}), \sigma^2)$ , the negative log-likelihood loss function is

 $\ell_{\text{nll}}(\mathbf{w}, x, y) = -\ln p(y|x, \mathbf{w}) = \frac{1}{2}\ln(2\pi\sigma^2) + \frac{1}{2\sigma^2}(y - \mathbf{w} \cdot \boldsymbol{\phi}(x))^2$ 

For the Gaussian prior  $p(\mathbf{w}|\sigma_{\pi}) = \mathcal{N}(\mathbf{0}, \sigma_{\pi}\mathbf{I})$ . the optimal posterior is given by  $p(\mathbf{w}|\sigma, \sigma_{\pi}) = \mathcal{N}(\mathbf{w} \mid \hat{w}, A^{-1})$ , The negative log marginal likelihood is

$$-\ln Z_{X,Y} = \underbrace{n \hat{\mathcal{L}}_{X,Y}^{\ell_{\mathrm{nll}}}(\widehat{\mathbf{w}}) + \frac{1}{2\sigma^{2}} \operatorname{tr}(\Phi^{T} \Phi A^{-1})}_{n \operatorname{E}_{\mathbf{w} \sim \hat{\rho}^{+}} \hat{\mathcal{L}}_{X,Y}^{\ell_{\mathrm{nll}}}(\mathbf{w})} + \underbrace{\frac{1}{2\sigma_{\pi}^{2}} \operatorname{tr}(A^{-1}) - \frac{d}{2} + \frac{1}{2\sigma_{\pi}^{2}} \|\widehat{\mathbf{w}}\|^{2} + \frac{1}{2} \log |A| + d \ln \sigma_{\pi}}_{\operatorname{KL}\left(\mathcal{N}(\widehat{\mathbf{w}}, A^{-1}) \| \mathcal{N}(0, \sigma_{\pi}^{2} \mathbf{I})\right)}.$$



PAC-Bayesian posterior The normalization constant is to