
From PAC-Bayes Bounds to KL Regularization

Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, Sara Shanian
Department of Computer Science and Software Engineering

Laval University, Québec (QC), Canada
firstname.secondname@ift.ulaval.ca

Abstract

We show that convex KL-regularized objective functions are obtained from a
PAC-Bayes risk bound when using convex loss functions for the stochastic Gibbs
classifier that upper-bound the standard zero-one loss used for the weighted ma-
jority vote. By restricting ourselves to a class of posteriors, that we call quasi
uniform, we propose a simple coordinate descent learning algorithm to minimize
the proposed KL-regularized cost function. We show that standard `p-regularized
objective functions currently used, such as ridge regression and `p-regularized
boosting, are obtained from a relaxation of the KL divergence between the quasi
uniform posterior and the uniform prior. We present numerical experiments where
the proposed learning algorithm generally outperforms ridge regression and Ada-
Boost.

1 Introduction

What should a learning algorithm optimize on the training data in order to give classifiers having the
smallest possible true risk? Many different specifications of what should be optimized on the train-
ing data have been provided by using different inductive principles. But the universally accepted
guarantee on the true risk, however, always comes with a so-called risk bound that holds uniformly
over a set of classifiers. Since a risk bound can be computed from what a classifier achieves on the
training data, it automatically suggests that learning algorithms should find a classifier that mini-
mizes a tight risk (upper) bound.

Among the data-dependent bounds that have been proposed recently, the PAC-Bayes bounds [6, 8,
4, 1, 3] seem to be especially tight. These bounds thus appear to be a good starting point for the
design of a bound-minimizing learning algorithm. In that respect, [4, 5, 3] have proposed to use
isotropic Gaussian posteriors over the space of linear classifiers. But a computational drawback of
this approach is the fact the Gibbs empirical risk is not a quasi-convex function of the parameters
of the posterior. Consequently, the resultant PAC-Bayes bound may have several local minima for
certain data sets—thus giving an intractable optimization problem in the general case. To avoid
such computational problems, we propose here to use convex loss functions for stochastic Gibbs
classifiers that upper-bound the standard zero-one loss used for the weighted majority vote. By
restricting ourselves to a class of posteriors, that we call quasi uniform, we propose a simple coor-
dinate descent learning algorithm to minimize the proposed KL-regularized cost function. We show
that there are no loss of discriminative power by restricting the posterior to be quasi uniform. We
also show that standard `p-regularized objective functions currently used, such as ridge regression
and `p-regularized boosting, are obtained from a relaxation of the KL divergence between the quasi
uniform posterior and the uniform prior. We present numerical experiments where the proposed
learning algorithm generally outperforms ridge regression and AdaBoost [7].

1

2 Basic Definitions

We consider binary classification problems where the input space X consists of an arbitrary subset
of Rd and the output space Y = {−1,+1}. An example is an input-output (x, y) pair where x ∈ X
and y ∈ Y . Throughout the paper, we adopt the PAC setting where each example (x, y) is drawn
according to a fixed, but unknown, distribution D on X × Y .

The risk R(h) of any classifier h : X → Y is defined as the probability that h misclassifies an
example drawn according to D. Given a training set S of m examples, the empirical risk RS(h) of
any classifier h is defined by the frequency of training errors of h on S. Hence

R(h) def= E
(x,y)∼D

I(h(x) 6= y) ; RS(h) def=
1
m

m∑
i=1

I(h(xi) 6= yi) ,

where I(a) = 1 if predicate a is true and 0 otherwise.

After observing the training set S, the task of the learner is to choose a posterior distribution Q
over a space H of classifiers such that the Q-weighted majority vote classifier BQ will have the
smallest possible risk. On any input example x, the output BQ(x) of the majority vote classifier BQ
(sometimes called the Bayes classifier) is given by

BQ(x) def= sgn
[

E
h∼Q

h(x)
]
,

where sgn(s) = +1 if s > 0 and sgn(s) =−1 otherwise. The output of the deterministic majority
vote classifier BQ is closely related to the output of a stochastic classifier called the Gibbs classifier
GQ. To classify an input example x, the Gibbs classifier GQ chooses randomly a (deterministic)
classifier h according to Q to classify x. The true risk R(GQ) and the empirical risk RS(GQ) of the
Gibbs classifier are thus given by

R(GQ) = E
h∼Q

R(h) ; RS(GQ) = E
h∼Q

RS(h) .

Any bound for R(GQ) can straightforwardly be turned into a bound for the risk of the majority vote
R(BQ). Indeed, whenever BQ misclassifies x, at least half of the classifiers (under measure Q)
misclassifies x. It follows that the error rate of GQ is at least half of the error rate of BQ. Hence
R(BQ) ≤ 2R(GQ). As shown in [5], this factor of 2 can sometimes be reduced to (1 + ε).

3 PAC-Bayes Bounds and General Loss Functions

In this paper, we use the following PAC-Bayes bound which is obtained directly from Theorem 1.2.1
of [1] and Corollary 2.2 of [3] by using 1− exp(−x) ≤ x ∀x ∈ R.
Theorem 3.1. For any distribution D, any set H of classifiers, any distribution P of support H,
any δ ∈ (0, 1], and any positive real number C ′, we have

Pr
S∼Dm

(
∀Q onH : R(GQ) ≤ 1

1− e−C′
[
C ′ ·RS(GQ) +

1
m

[
KL(Q‖P) + ln

1
δ

]])
≥ 1− δ ,

where KL(Q‖P) def= E
h∼Q

ln Q(h)
P (h) is the Kullback-Leibler divergence between Q and P .

Note that the dependence on Q of the upper bound on R(GQ) is realized via Gibbs’ empirical risk
RS(GQ) and the PAC-Bayes regularizer KL(Q‖P). As in boosting, we focus on the case where
the a priori defined class H consists (mostly) of “weak” classifiers having large risk R(h) . In this
case, R(GQ) is (almost) always large (near 1/2) for any Q even if the majority vote BQ has null
risk. In this case the disparity between R(BQ) and R(GQ) is enormous and the upper-bound on
R(GQ) has very little relevance with R(BQ). On way to obtain a more relevant bound on R(BQ)
from PAC-Bayes theory is to use a loss function ζQ(x, y) for stochastic classifiers which is distinct
from the loss used for the deterministic classifiers (the zero-one loss in our case). In order to obtain
a tractable optimization problem for a learning algorithm to solve, we propose here to use a loss
ζQ(x, y) which is convex in Q and that upper-bounds as closely as possible the zero-one loss of the
deterministic majority vote BQ.

2

Consider WQ(x, y) def= Eh∼QI(h(x) 6= y), the Q-fraction of binary classifiers that err on exam-
ple (x, y). Then, R(GQ) = E(x,y)∼DWQ(x, y). Following [2], we consider any non-negative
convex loss ζQ(x, y) that can be expanded in a Taylor series around WQ(x, y) = 1/2:

ζQ(x, y) def= 1 +
∞∑
k=1

ak (2WQ(x, y)− 1)k = 1 +
∞∑
k=1

ak

(
E
h∼Q

− yh(x)
)k

,

that upper bounds the risk of the majority vote BQ, i.e.,

ζQ(x, y) ≥ I
(
WQ(x, y) >

1
2

)
∀Q,x, y .

It has been shown [2] that ζQ(x, y) can be expressed in terms of the risk on example (x, y) of a
Gibbs classifier described by a transformed posterior Q on N×H∞, i.e.,

ζQ(x, y) = 1 + ca

[
2WQ(x, y)− 1

]
,

where ca
def=
∑∞
k=1 |ak| and where

WQ(x, y) def=
1
ca

∞∑
k=1

|ak| E
h1∼Q

. . . E
hk∼Q

I
(

(−y)kh1(x) . . . hk(x) = −sgn(ak)
)
.

Since WQ(x, y) is the expectation of boolean random variable, Theorem 3.1 holds if we replace

(P,Q) by (P ,Q) with R(GQ) def= E
(x,y)∼D

WQ(x, y) and RS(GQ) def= 1
m

∑m
i=1WQ(xi, yi). More-

over, it has been shown [2] that

KL(Q‖P) = k ·KL(Q‖P) , where k def=
1
ca

∞∑
k=1

|ak| · k .

If we define

ζQ
def= E

(x,y)∼D
ζ(x, y) = 1 + ca[2R(GQ)− 1]

ζ̂Q
def=

1
m

m∑
i=1

ζ(xi, yi) = 1 + ca[2RS(GQ)− 1] ,

Theorem 3.1 gives an upper bound on ζQ and, consequently, on the true risk R(BQ) of the majority
vote. More precisely, we have the following theorem.
Theorem 3.2. For any D, anyH, any P of supportH, any δ ∈ (0, 1], any positive real number C ′,
any loss function ζQ(x, y) defined above, we have

Pr
S∼Dm

(
∀Q onH : ζQ ≤ g(ca, C ′) +

C ′

1− e−C′
[
ζ̂Q +

2ca
mC ′

[
k ·KL(Q‖P) + ln

1
δ

]])
≥ 1− δ ,

where g(ca, C ′)
def= 1− ca + C′

1−e−C′ · (ca − 1).

4 Bound Minimization Learning Algorithms

The task of the learner is to find the posterior Q that minimizes the upper bound on ζQ for a fixed
loss function given by the coefficients {ak}∞k=1 of the Taylor series expansion for ζQ(x, y). Finding
Q that minimizes the upper bound given by Theorem 3.2 is equivalent to finding Q that minimizes

f(Q) def= C

m∑
i=1

ζQ(xi, yi) + KL(Q‖P) ,

where C def= C ′/(2cak) .

3

To compare the proposed learning algorithms with AdaBoost, we will consider, for ζQ(x, y), the
exponential loss given by

exp

(
− 1
γ
y
∑
h∈H

Q(h)h(x)

)
= exp

(
1
γ

[2WQ(x, y)− 1]
)
.

For this choice of loss, we have ca = eγ
−1−1 and k = γ−1/(1−e−γ−1

). Because of its simplicity,
we will also consider, for ζQ(x, y), the quadratic loss given by(

1
γ
y
∑
h∈H

Q(h)h(x)− 1

)2

=
(

1
γ

[1− 2WQ(x, y)]− 1
)2

.

For this choice of loss, we have ca = 2γ−1 + γ−2 and k = (2γ + 2)/(2γ + 1). Note that this loss
has the minimum value of zero for examples having a margin y

∑
h∈HQ(h)h(x) = γ.

With these two choices of loss functions, ζQ(x, y) is convex in Q. Moreover, KL(Q‖P) is also
convex in Q. Since a sum of convex functions is also convex, it follows that objective function f
is convex in Q (which has a convex domain). Consequently, f has a single local minimum which
coincides with the global minimum. We therefore propose to minimize f coordinate-wise, similarly
as it is done for AdaBoost [7]. However, to ensure that Q is a distribution (i.e., that

∑
h∈HQ(h) =

1), each coordinate minimization will consist of a transfer of weight from one classifier to another.

4.1 Quasi Uniform Posteriors

We consider learning algorithms that work in a space H of binary classifiers such that for
each h ∈ H, the boolean complement of h is also in H. More specifically, we have H =
{h1, . . . , hn, hn+1, . . . , h2n} where hi(x) = −hn+i(x) ∀x ∈ X and ∀i ∈ {1, . . . , n}. We thus
say that (hi, hn+i) constitutes a boolean complement pair of classifiers.

We consider a uniform prior distribution P overH, i.e., Pi = 1
2n ∀i ∈ {1, . . . , 2n}.

The posterior distribution Q over H is constrained to be quasi uniform. By this, we mean that
Qi +Qi+n = 1

n ∀i ∈ {1, . . . , n}, i.e., the total weight assigned to each boolean complement pair of

classifiers is fixed to 1/n. Let wi
def= Qi − Qi+n ∀i ∈ {1, . . . , n}. Then wi ∈ [−1/n,+1/n] ∀i ∈

{1, . . . , n} whereas Qi ∈ [0, 1/n] ∀i ∈ {1, . . . , 2n}.
For any quasi uniform Q, the output BQ(x) of the majority vote on any example x is given by

BQ(x) = sgn
(2n∑
i=1

Qihi(x)
)

= sgn
(n∑
i=1

wihi(x)
)

def= sgn
(
w · h(x)

)
.

Consequently, the set of majority votes BQ over quasi uniform posteriors is isomorphic to the set
of linear separators with real weights. There is thus no loss of discriminative power if we restrict
ourselves to quasi uniform posteriors.

Since all loss functions that we consider are functions of 2WQ(x, y) − 1 = −y
∑
iQihi(x), they

are thus functions of yw · h(x). Hence we will often write ζ(yw · h(x)) for ζQ(x, y).

The basic iteration for the learning algorithm consists of choosing (at random) a boolean com-
plement pair of classifiers, call it (h1, hn+1), and then attempting to change only Q1, Qn+1, w1

according to:

Q1 ← Q1 +
δ

2
; Qn+1 ← Qn+1 −

δ

2
; w1 ← w1 + δ , (1)

for some optimally chosen value of δ.

Let Qδ and wδ be, respectively, the new posterior and the new weight vector obtained with such a
change. The above-mentioned convex properties of objective function f imply that we only need to
look for the value of δ∗ satisfying

df(Qδ)
dδ

= 0 . (2)

4

If w1 + δ∗ > 1/n, then w1 ← 1/n, Q1 ← 1/n, Qn+1 ← 0. If w1 + δ∗ < −1/n, then w1 ←
−1/n, Q1 ← 0, Qn+1 ← 1/n. Otherwise, we accept the change described by Equation 1 with
δ = δ∗.

For objective function f we simply have

df(Qδ)
dδ

= Cm
dζ̂Qδ
dδ

+
dKL(Qδ‖P)

dδ
, (3)

where
dKL(Qδ‖P)

dδ
=

d

dδ

[(
Q1 +

δ

2

)
ln
Q1 + δ

2
1
2n

+
(
Qn+1 −

δ

2

)
ln
Qn+1 − δ

2
1
2n

]

=
1
2

ln
[
Q1 + δ/2
Qn+1 − δ/2

]
. (4)

For the quadratic loss, we find

m
dζ̂Qδ
dδ

=
2mδ
γ2

+
2
γ2

m∑
i=1

Dql
w(i)yih1(xi) , (5)

where
Dql

w(i) def= yiw · h(xi)− γ . (6)
Consequently, for the quadratic loss case, the optimal value δ∗ satisfies

2Cmδ
γ2

+
2C
γ2

m∑
i=1

Dql
w(i)yih1(xi) +

1
2

ln
[
Q1 + δ/2
Qn+1 − δ/2

]
= 0 . (7)

For the exponential loss, we find

m
dζ̂Qδ
dδ

=
eδ/γ

γ

m∑
i=1

Del
w(i)I(h1(xi) 6= yi)−

e−δ/γ

γ

m∑
i=1

Del
w(i)I(h1(xi) = yi) , (8)

where

Del
w(i) def= exp

(
− 1
γ
yiw · h(xi)

)
. (9)

Consequently, for the exponential loss case, the optimal value δ∗ satisfies

Ceδ/γ

γ

m∑
i=1

Del
w(i)I(h1(xi) 6= yi)

− Ce−δ/γ

γ

m∑
i=1

Del
w(i)I(h1(xi) = yi) +

1
2

ln
[
Q1 + δ/2
Qn+1 − δ/2

]
= 0 . (10)

After changing w1, we need to recompute1 Dw(i) ∀i ∈ {1, . . . ,m}. This can be done with the
following update rules.

Dql
w(i) ← Dql

w(i) + yih1(xi)δ (quadratic loss case) (11)

Del
w(i) ← Del

w(i)e−
1
γ yih1(xi)δ (exponential loss case) . (12)

Since, initially we have
Dql

w(i) = −γ ∀i ∈ {1, . . . ,m} (quadratic loss case) (13)

Del
w(i) = 1 ∀i ∈ {1, . . . ,m} (exponential loss case) , (14)

the dot product present in Equations 6 and 9 never needs to be computed. Consequently, updating
Dw takes Θ(m) time.

The computation of the summations over the m examples in Equation 7 or 10 takes Θ(m) time.
Once these summations are computed, solving Equation 7 or 10 takes Θ(1) time. Consequently,
it takes Θ(m) time to perform one basic iteration of the learning algorithm which consist of (1)
solving Equation 7 or 10 to find δ∗, (2) modifying w1, Q1, Qn+1, and (3) updating Dw according to
Equation 11 or 12. The complete algorithm, called f minimization, is described by the pseudo code
of Algorithm 1.

1Dw(i) stands for either Dql
w(i) or Del

w(i).

5

Algorithm 1 : f minimization

1: Initialization: Let Qi = Qn+i = 1
2n , wi = 0, ∀i ∈ {1, . . . , n}.

Initialize Dw according to Equation 13 or 14.

2: repeat

3: Choose at random h ∈ H and call it h1 (hn+1 is then the boolean complement of h1).

4: Find δ∗ that solves Equation 7 or 10.

5: If [−1
n < w1 + δ∗ < 1

n] then Q1 ← Q1 + δ/2; Qn+1 ← Qn+1 − δ/2; w1 ← w1 + δ.

6: If [w1 + δ∗ ≥ 1
n] then Q1 ← 1

n ; Qn+1 ← 0; w1 ← 1
n .

7: If [w1 + δ∗ ≤ −1
n] then Q1 ← 0; Qn+1 ← 1

n ; w1 ← −1
n .

8: Update Dw according to Equation 11 or 12.

9: until Convergence

The repeat-until loop in Algorithm 1 was implemented as follows. We first mix at random the n
boolean complement pairs of classifiers and then go sequentially over each pair (hi, hn+i) to update
wi and Dw. We repeat this sequence until no weight change exceeds a specified small number ε.

4.2 From KL(Q‖P) to `p Regularization

We can recover `2 regularization if we upper-bound KL(Q‖P) by a quadratic function. Indeed, if
we use

q ln q +
(

1
n
− q
)

ln
(

1
n
− q
)
≤ 1

n
ln

1
2n

+ 4n
(
q − 1

2n

)2

∀q ∈ [0, 1/n] , (15)

we obtain, for the uniform prior Pi = 1/(2n),

KL(Q‖P) = ln(2n) +
n∑
i=1

[
Qi lnQi +

(
1
n
−Qi

)
ln
(

1
n
−Qi

)]

≤ 4n
n∑
i=1

(
Qi −

1
2n

)2

= n

n∑
i=1

w2
i . (16)

With this approximation, the objective function to minimize becomes

f`2(w) = C ′′
m∑
i=1

ζ

(
1
γ
yiw · h(xi)

)
+ ‖w‖22 , (17)

subject to the `∞ constraint |wj | ≤ 1/n ∀j ∈ {1, . . . , n}. Here ‖w‖2 denotes the Euclidean norm
of w and ζ(x) = (x− 1)2 for the quadratic loss and e−x for the exponential loss.

If, instead, we minimize f`2 for v def= w/γ and remove the `∞ constraint, we recover exactly ridge
regression for the quadratic loss case and `2-regularized boosting for the exponential loss case.

We can obtain a `1-regularized version of Equation 17 by repeating the above steps and us-
ing 4n

(
q − 1

2n

)2 ≤ 2
∣∣q − 1

2n

∣∣ ∀q ∈ [0, 1/n] since, in that case, we find that KL(Q‖P) ≤∑n
i=1 |wi|

def= ‖w‖1.

To sum up, the KL-regularized objective function f immediately follows from PAC-Bayes theory
and `p regularization is obtained from a relaxation of f . Consequently, PAC-Bayes theory favors
the use of KL regularization if the goal of the learner is to produce a weighted majority vote with
good generalization.2

2Interestingly, [9] has recently proposed a KL-regularized version of LPBoost but their objective function
was not derived from a uniform risk bound.

6

5 Empirical Results

For the sake of comparison, all learning algorithms of this subsection are producing a weighted
majority vote classifier on the set of basis functions {h1, . . . , hn} known as decision stumps. Each
decision stump hi is a threshold classifier that depends on a single attribute: its output is +b if
the tested attribute exceeds a threshold value t, and −b otherwise, where b ∈ {−1,+1}. For each
attribute, at most ten equally-spaced possible values for t were determined a priori. Recall that,
although Algorithm 1 needs a set H of 2n classifiers containing n boolean complement pairs, it
outputs a majority vote with n real-valued weights defined on {h1, . . . , hn}.
The results obtained for all tested algorithms are summarized in Table 1. We have compared Al-
gorithm 1 with quadratic loss (KL-QL) and exponential loss (KL-EL) to AdaBoost [7] (AdB) and
ridge regression (RR).

Except for MNIST, all data sets were taken from the UCI repository. Each data set was randomly
split into a training set S of |S| examples and a testing set T of |T | examples. The number a
of attributes for each data set is also specified in Table 1. For AdaBoost, the number of boosting
rounds was fixed to 200. For all algorithms, RT refers to the frequency of errors, measured on the
testing set T .

In addition to this, the “C and “γ” columns in Table 1 refer, respectively, to the C value of the
objective function f and to the γ parameter present in the loss functions. These hyperparameters
were determined from the training set only by performing the 10-fold cross validation (CV) method.
The hyperparameters that gave the smallest 10-fold CV error were then used to train the Algorithms
on the whole training set and the resulting classifiers were then run on the testing set.

Table 1: Summary of results.

Dataset (1) AdB (2) RR (3) KL-EL (4) KL-QL SSB
Name |S| |T | a RT RT C RT C γ RT C γ
BreastCancer 343 340 9 0.053 0.050 10 0.047 0.1 0.1 0.047 0.02 0.4
Liver 170 175 6 0.320 0.309 5 0.360 0.5 0.02 0.286 0.02 0.3
Credit-A 353 300 15 0.170 0.157 2 0.227 0.1 0.2 0.183 0.02 0.05
Glass 107 107 9 0.178 0.206 5 0.187 500 0.01 0.196 0.02 0.01
Haberman 144 150 3 0.260 0.273 100 0.253 500 0.2 0.260 0.02 0.5
Heart 150 147 13 0.252 0.197 1 0.211 0.2 0.1 0.177 0.05 0.2
Ionosphere 176 175 34 0.120 0.131 0.05 0.120 20 0.0001 0.097 0.2 0.1
Letter:AB 500 1055 16 0.010 0.004 0.5 0.006 0.1 0.02 0.006 1000 0.1
Letter:DO 500 1058 16 0.036 0.026 0.05 0.019 500 0.01 0.020 0.02 0.05
Letter:OQ 500 1036 16 0.038 0.045 0.5 0.043 10 0.0001 0.047 0.1 0.05
MNIST:0vs8 500 1916 784 0.008 0.015 0.05 0.006 500 0.001 0.015 0.2 0.02 (3) < (2, 4)
MNIST:1vs7 500 1922 784 0.013 0.012 1 0.014 500 0.02 0.014 1000 0.1
MNIST:1vs8 500 1936 784 0.025 0.024 0.2 0.016 0.2 0.001 0.031 1 0.02 (3) < (4)
MNIST:2vs3 500 1905 784 0.047 0.033 0.2 0.035 500 0.0001 0.029 0.02 0.05 (4) < (1)
Mushroom 4062 4062 22 0.000 0.001 0.5 0.000 10 0.001 0.000 1000 0.02
Ringnorm 3700 3700 20 0.043 0.037 0.05 0.025 500 0.01 0.039 0.05 0.05 (3) < (1, 2, 4)
Sonar 104 104 60 0.231 0.192 0.05 0.135 500 0.05 0.115 1000 0.1
Usvotes 235 200 16 0.055 0.060 2 0.060 0.5 0.1 0.055 1000 0.05
Waveform 4000 4000 21 0.085 0.079 0.02 0.080 0.2 0.05 0.080 0.02 0.05
Wdbc 285 284 30 0.049 0.049 0.2 0.039 500 0.02 0.046 1000 0.1

We clearly see that the cross-validation method generally chooses very small values for γ. This, in
turn, gives a risk bound (computed from Theorem 3.2) having very large values (results not shown
here). We have also tried to choose C and γ from the risk bound values.3 This method for selecting
hyperparameters turned out to produce classifiers having larger testing errors (results not shown
here).

To determine whether or not a difference of empirical risk measured on the testing set T is statisti-
cally significant, we have used the test set bound method of [4] (based on the binomial tail inversion)

3From the standard union bound argument, the bound of Theorem 3.2 holds simultaneously for k different
choices of (γ,C) if we replace δ by δ/k.

7

with a confidence level of 95%. It turns out that no algorithm has succeeded in choosing a majority
vote classifier which was statistically significantly better (SSB) than the one chosen by another al-
gorithm except for the 4 cases that are listed in the column “SSB” of Table 1. We see that on these
cases, Algorithm 1 turned out to be statistically significantly better.

6 Conclusion

Our numerical results indicate that Algorithm 1 generally outperforms AdaBoost and ridge regres-
sion when the hyperparameters C and γ are chosen by cross-validation. This indicates that the
empirical loss ζ̂Q and the KL(Q‖P) regularizer that are present in the PAC-Bayes bound of Theo-
rem 3.2 are key ingredients for learning algorithms to focus on. The fact that cross-validation turns
out to be more efficient than Theorem 3.2 at selecting good values for hyperparameters indicates that
PAC-Bayes theory does not yet capture quantitatively the proper tradeoff between ζ̂Q and KL(Q‖P)
that learners should optimize on the trading data. However, we feel that it is important to pursue
this research direction since it could potentially eliminate the need to perform the time-consuming
cross-validation method for selecting hyperparameters and provide better guarantees on the gener-
alization error of classifiers output by learning algorithms. In short, it could perhaps yield the best
generic optimization problem for learning.

Acknowledgments

Work supported by NSERC discovery grants 122405 (M.M.) and 262067 (F.L.).

References

[1] Olivier Catoni. PAC-Bayesian surpevised classification: the thermodynamics of sta-
tistical learning. Monograph series of the Institute of Mathematical Statistics,
http://arxiv.org/abs/0712.0248, December 2007.

[2] Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. A pac-bayes
risk bound for general loss functions. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Ad-
vances in Neural Information Processing Systems 19, pages 449–456. MIT Press, Cambridge,
MA, 2007.

[3] Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. PAC-Bayesian
learning of linear classifiers. In Léon Bottou and Michael Littman, editors, Proceedings of
the 26th International Conference on Machine Learning, pages 353–360, Montreal, June 2009.
Omnipress.

[4] John Langford. Tutorial on practical prediction theory for classification. Journal of Machine
Learning Research, 6:273–306, 2005.

[5] John Langford and John Shawe-Taylor. PAC-Bayes & margins. In S. Thrun S. Becker and
K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 423–430.
MIT Press, Cambridge, MA, 2003.

[6] David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51:5–21,
2003.

[7] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics, 26:1651–1686,
1998.

[8] Matthias Seeger. PAC-Bayesian generalization bounds for gaussian processes. Journal of Ma-
chine Learning Research, 3:233–269, 2002.

[9] Manfred K. Warmuth, Karen A. Glocer, and S.V.N. Vishwanathan. Entropy regularized LP-
Boost. In Proceedings of the 2008 conference on Algorithmic Learning Theory, Springer LNAI
5254,, pages 256–271, 2008.

8

