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1 Proof of Claim 1 in the proof of Theorem 5

Claim 1 : ES∼DmXP ≤ e4ld · 2√m.

The claim uses the following lemma.

Lemma 0. (Maurer (2004)) Let n ≥ 8, and suppose that X = (X1, . . . , Xn) is a vector of iid random

variables, 0 ≤ Xi ≤ 1, E[Xi] = ν and let M(X) = 1
n

∑n
j=1 Xi be the arithmetic mean of the random

variables. Then

√
n ≤ E en kl(M(X)‖ν) ≤ 2

√
n .

Proof of Claim 1. Let us first recall that

XP

def
= E

h∼P

e(m−|ih|)·2(RS(h)−RD(h))2 .

Let us also introduce a new notation. Let R̃S(h̄) be the abstract empirical risk computed on the examples
of S that are not in the compression sequence of h̄. More formally,

R̃S(h1..hk )
def
=

1

m− |ih1..hk
|

m∑

j=1

I
(
¬⊻k

i=1
(hi(xj) 6=yj)

)
I
(
(xj , yj) 6∈ ih1..hk

)
,

where ⊻ denotes the exclusive or. Based on the definition of Equation (9) in the main paper, one can easily

show that R̃S(h̄) = RU (h̄) with U = S\Sih̄
, where ih̄ points to the examples belonging to the union of all

compression sequences of the sc-classifiers in h̄. Moreover, note that, contrarily to RS(h̄) which may contain

some bias, R̃S(h̄) is an arithmetic mean of truly iid (m − |ih̄|) random variables. On another hand, these
two random variables have values that are very close to each other. Indeed, since

0 ≤ m ·RS(h̄)− (m− |ih̄|) · R̃S(h̄) ≤ |ih̄| ,

we have

−|ih̄| ≤ −|ih̄| · R̃S(h̄) ≤ m ·RS(h̄)−m · R̃S(h̄) ≤ |ih̄| − |ih̄| · R̃S(h̄) ≤ |ih̄| .

Therefore,

∣∣∣RS(h̄)− R̃S(h̄)
∣∣∣ ≤ |ih̄|

m
.(20)

Given a compression sequence Si, let i
c be the vector of indices of I that are not in the vector i.. We now

have

ES∼DmXP

def
= E

S∼Dm
E

h̄∼P

e(m−|ih̄|)·2(RS(h̄)−RD(h̄))2

= E
i∼PI

E
Si∼D|i|

E
µ∼P

S
i

E
Sic∼Dm−|i|

e(m−|i|)·2 (RS(hµ
i
)−RD(hµ

i
))2 ,

Hence, to prove Claim 1, it suffices to show that for all i ∈ I, Si ∈ (X × Y)|i|, and µ ∈MSi
, we have

E
Sic∼Dm−|i|

e(m−|i|)·2 (RS(hµ
i
)−RD(hµ

i
))2 ≤ e4ld · 2

√
m.(21)
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Here is the sketch of the proof of Equation (21). Justification for Line (22) to (25) follows below.

E
Sic∼Dm−|i|

e(m−|i|)·2 (RS(hµ
i
)−RD(hµ

i
))2

= E
Sic∼D(m−|i|)

e(m−|i|)·2 (RS(hµ
i
)−R̃S(hµ

i
)+R̃S(hµ

i
)−RD(hµ

i
))

2

≤ E
Sic∼D(m−|i|)

e
(m−|i|)·2

(
[RS(h

µ
i
)−R̃S(h

µ
i
)]

2
+2|RS(h

µ
i
)−R̃S(h

µ
i
)|·|R̃S(h

µ
i
)−RD(h

µ
i
)|+[R̃S(h

µ
i
)−RD(h

µ
i
)]

2
)

≤ E
Sic∼D(m−|i|)

e
(m−|i|)·2

(
[ |i|m ]

2
+2

|i|
m

·1+ [R̃S(hµ
i
)−RD(hµ

i
)]

2
)

(22)

≤ E
Sic∼D(m−|i|)

e4ld + (m−|i|)·2[R̃S(hµ
i
)−RD(hµ

i
)]

2

(23)

≤ E
Sic∼D(m−|i|)

e4ld + (m−|i|)·kl(R̃S(hµ
i
)‖RD(hµ

i
))(24)

= e4ld · E
Sic∼D(m−|i|)

e(m−|i|) · kl(R̃S(hµ
i
)‖RD(hµ

i
))

≤ e4ld · 2
√

m− |i|(25)

≤ e4ld · 2
√
m

Line (22) follows from Equation (20) and the fact that the exponential function is increasing. For

Line (23), since |i| ≤ ld, we simply have to show that (m− |i|) · 2
(

|i|
m2 + 2

m

)
≤ 4 , which follows from direct

calculations. Line (24) follows directly from the property : 2(q − p)2 ≤ kl(q ‖ p), which can also be proved

via straightforward calculations. Finally, for Line (25), first observe that R̃S(h
µ
i ) is an arithmetic mean of

(m− |i|) iid random variables. Thus Line (25) is simply an application of Lemma 0 with M(X) replaced by

R̃S(h
µ
i ), n replaced by m− |i|, and ν replaced by RD(hµ

i ) . Thus, Claim 1 is proved. �

3



2 Proof of Theorem 1: The PAC-Bayes bound with KL(Q‖P )

Theorem 1. For any D, any family (HS)S∈Dm of sets of sc-classifiers of size at most l, any prior P, any
δ ∈ (0, 1], any positive real number C1, and any margin loss function ζ such that l · deg(ζ) < m, we have

Pr
S∼Dm

(
∀Q on H

S:

ζQD ≤ ζ(1)[C ′ − 1] + C ′ ·
(
ζQS + 2

m·C1
[ζ ′(1) ·KL(Q‖P ) + ζ(1) · ln 1

δ
]
)
)
≥ 1− δ

where KL(·‖·) is the Kullback-Leibler divergence, and where C ′ =
C1·

m
m−l·deg ζ

1−e
−C1·m−l·deg ζ

m

.

Proof. Let S be any training sequence, d
def
= deg ζ . Let F be a convex function to be defined later, and

D(q, p) def
= F(p)− C1 · q.

For each k ∈ {0, .., d} and any k-tupple (h1, .., hk), let us define h̄ = h1..hk as an “abstract” sc-classifier

whose “abstract” true and empirical risks are respectively defined as

RD(h1..hk )
def
= E

(x,y)∼D
I(¬⊻k

i=1
(hi(x) 6=y)) ,

RS(h1..hk )
def
= E

(x,y)∼S
I(¬⊻k

i=1
(hi(x) 6=y)) =

1

m

m∑

j=1

I(¬⊻k

i=1
(hi(xj) 6=yj)) ,

where ⊻ denotes the exclusive or.

Considering the above definitions, we also have

RD(h1..hk ) = E
(x,y)∼D

I(¬⊻k

i=1
(hi(x) 6=y)) = E

(x,y)∼D

1

2

[
1 +

k∏

i=1

−yhi(x)

]
.

Since the compression sequence size of each hi’s is at most l, we have |ih̄| ≤ l · k for any h̄ = h1..hk.

Moreover, we have RD(h1..h0) = 1 when k = 0 because the exclusive or over an empty sequence outputs

false. For each S, let HS be the set of all such sc-classifiers, and for each distribution Q on HS , denote by

Q the following distribution on HS :

Q(h1..hk )
def
=

ak
ζ(1)

Q(h1) · . . . ·Q(hk) =
ak
ζ(1)

k∏

i=1

Q(hi) .

Since ζ(1)=
∑d

k=0 ak, Q is a probability distribution. We also denote by P the following distribution on HS :

P (h1..hk)
def
=

ak
ζ(1)

· P (h1) · . . . · P (hk) =
ak
ζ(1)

k∏

i=1

P (hi) .

4



Moreover, for U=D and U=S, we have

RU (GQ) = E
h̄∼Q

RU (h̄)

=

deg(ζ)∑

k=0

ak
ζ(1)

E
h1∼Q

. . . E
hk∼Q

E
(x,y)∼D

1

2

[
1 +

k∏

i=1

−yhi(x)

]

=

deg(ζ)∑

k=0

ak
ζ(1)

E
(x,y)∼D

1

2

[
1 +

k∏

i=1

E
hi∼Q

− yhi(x)

]

=
1

2

[
1 +

1

ζ(1)
E

(x,y)∼D

deg(ζ)∑

k=0

ak( E
h∼Q

− yh(x))k
]

=
1

2

[
1 +

1

ζ(1)
E

(x,y)∼D

deg(ζ)∑

k=0

ak(−MQ(x, y))
k

]

=
1

2

[
1 +

1

ζ(1)
ζQU

]
.(26)

Now, let us consider the following Laplace transform

XP

def
= Eh̄∼P e(m−|ih̄|)D(RS(h̄),RD(h̄)) .

It then follows from Markov’s inequality that

Pr
S∼Dm

(
XP ≤

1

δ
E

S∼Dm
XP

)
≥ 1− δ .

By taking the logarithm on each side of the innermost inequality and by transforming the expectation over

P into an expectation over Q, we obtain

(27) Pr
S∼Dm

(
∀Q : ln

[
E

h̄∼Q

P (h̄)

Q(h̄)
e(m−|ih̄|)D(RS(h̄),RD(h̄))

]
≤ ln

[
1

δ
E

S∼Dm
E

h̄∼P

e(m−|ih̄|)D(RS(h̄),RD(h̄))

])
≥ 1− δ .

Since ζ ′(1)=
∑d

k=1 k ·ak , by straightforward calculation, one can show that

E
h̄∼Q

ln
P (h̄)

Q(h̄)
= −ζ ′(1)

ζ(1)
·KL(Q‖P ) .

This, together with Jensen’s inequality applied to the concave ln(x), gives

ln

[
E

h̄∼Q

P (h̄)

Q(h̄)
e(m−|ih̄|)D(RS(h̄),RD(h̄))

]
≥ −ζ ′(1)

ζ(1)
·KL(Q‖P ) + E

h̄∼Q

(m− |ih̄|)D(RS(h̄), RD(h̄)) .(28)

Again from the Jensen’s inequality applied to the convex function F , together with Equation (26), and

the fact that m− l · d ≤ (m− |ih̄|) ≤ m , we obtain

E
h̄∼Q

(m− |ih̄|) D(RS(h̄), RD(h̄)) ≥ (m− ld) E
h̄∼Q

F(RD(h̄))−m E
h̄∼Q

C1 ·RS(h̄))

≥ (m− ld)F
(
1

2

[
1 +

1

ζ(1)
ζQD

])
−mC1 ·

1

2

[
1 +

1

ζ(1)
ζQS

]
.(29)
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Let us analyze the value of ES∼DmXP , appearing in the right-hand side of the innermost inequality

of Equation (27) . First, let us define ic as the vector of indices of I that are not in the vector i. Thus,

|ic| = m− |i|. Now, note that

E
S∼Dm

E
h̄∼P

e(m−|ih̄|)D(RS(h̄),RD(h̄)) = E
i∼PI

E
Si∼D|i|

E
µ∼P

S
i

E
Sic∼Dm−|i|

e|i
c| D(RS(hµ

i
),RD(hµ

i
)) .

Now, for each hµ
i ∈ HS , define aµSi

def
=
∑

(x,y)∈Si
I(hµ

i (x) 6= y). Observe that m · RS(h
µ
i ) − aµSi

is the

number of errors made by hµ
i on Sic . Since the later is iid and disjoint from the compression sequence of hµ

i ,

we have that m · RS(h
µ
i ) − aµSi

is a random variable following a binomial law of parameters (|ic|, RD(hµ
i )).

Since, (m− ld) · k
m
≤ |ic| · k+a

µ
S
i

m
for any k ∈ {0, .., |ic|}, we have

(30)

E

S
ic ∼Dm−|i|

e
|ic|D(RS(h

µ
i
),RD(h

µ
i
))

= E

S
ic ∼Dm−|i|

e
|ic|F(RD(h

µ
i
))−C1|i

c|RS(h
µ
i
)

= e
|ic|F(RD(h

µ
i
))
·
∑|ic|

k=0 Pr
S∼Dm

(

m·RS(h
µ
i
)−a

µ
S
i
= k

)

e
−C1|i

c|·
k+ a

µ
S
i

m

≤ e
|ic|F(RD(h

µ
i
))
·
∑|ic|

k=0 Pr
S∼Dm

(

m·RS(h
µ
i
)−a

µ
S
i
= k

)

e
−C1·(m−ld)· k

m

= e
|ic|F(RD(h

µ
i
))
·
∑|ic|

k=0 (
|ic|
k )(RD(hµ

i
))

k
(1−RD(hµ

i
))

|ic|−k
e
−C1·

m−ld
m ·k

= e
|ic|F(RD(h

µ
i
))
(

1−RD(hµ
i
) [1−e

−C1·
m−ld

m ]

)|ic|

.

The last equation being obtained from the Newton binomial
∑k

i=0

(
m
k

)
xkym−k = (x+ y)

k
.

Let us now define F such that 1 = e|i
c|F(RD(hµ

i
))
(
1−RD(hµ

i ) [1− e−C1·
m−ld

m ]
)|ic|

. Equivalently, let

(31) F(RD(hµ
i )))

def
=− ln

(
1−RD(hµ

i ))

[
1− e−C1

m−ld
m

])
.

With this choice, we have E
S∼Dm

E
h
µ
i
∼P

e|i
c|D(RS(hµ

i
),RD(hµ

i
)) = 1 .

To finish the proof, let us combine Equations (28), (29), (30) and (31), in order to rewrite the innermost

inequality of Equation (27) as follows

(m− ld) · F
(
1

2

[
1 +

1

ζ(1)
ζQD

])
−mC1 ·

1

2

[
1 +

1

ζ(1)
ζQS

]
−ζ ′(1)

ζ(1)
·KL(Q‖P ) ≤ ln

1

δ

(m− ld)

{
− ln

(
1− 1

2

[
1 +

1

ζ(1)
ζQD

] [
1− e−C1

m−ld
m

])}
≤ mC1 ·

1

2

[
1 +

1

ζ(1)
ζQS

]
+
ζ ′(1)

ζ(1)
·KL(Q‖P ) + ln

1

δ

1

2

[
1 +

1

ζ(1)
ζQD

] [
1− e−C1

m−ld
m

]
≤ 1− exp

{
−
(

1

m− ld

)(
mC1 ·

1

2

[
1 +

1

ζ(1)
ζQS

]
+
ζ ′(1)

ζ(1)
·KL(Q‖P ) + ln

1

δ

)}

1

2

[
1 +

1

ζ(1)
ζQD

] [
1− e−C1

m−ld
m

]
≤
(

1

m− ld

)(
mC1 ·

1

2

[
1 +

1

ζ(1)
ζQS

]
+
ζ ′(1)

ζ(1)
·KL(Q‖P ) + ln

1

δ

)
,
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where the last transformation is an application of the inequality 1 − e−x ≤ x. We are now able to

isolate ζQD to obtain

ζQD ≤
(

2 · ζ(1)

1− e−C1
m−ld
m

)(
1

m− ld

)(
mC1 ·

1

2

[
1 +

1

ζ(1)
ζQS

]
+
ζ ′(1)

ζ(1)
·KL(Q‖P ) + ln

1

δ

)
− ζ(1)

=

(
C1

m
m−ld

1− e−C1
m−ld
m

)(
ζ(1) + ζQS +

2

mC1
[ζ ′(1) ·KL(Q‖P ) + ζ(1) · ln 1

δ
]

)
− ζ(1)

= ζ(1)[C ′ − 1] + C ′ ·
(
ζQS +

2

mC1
[ζ ′(1) ·KL(Q‖P ) + ζ(1) · ln 1

δ
]

)
,

where

C ′ =
C1 · m

m−l·deg ζ

1− e−C1·
m−l·deg ζ

m

.
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3 Details related to the PBSC algorithms

In this section, we present the theoretical development leading the two PBSC learning algorithms and the
optimization procedures. Both algorithms build a majority vote of sc-classifier of compression sequence size
of at most one as defined in Section 2.2 of the main paper. The two algorithms that we present minimize a
bound on the quadratic loss. Given a fixed parameter q, the loss an example having margin (−α) is given
by:

ζ(α) =
(
1 + 1

q
α
)2

.

The first algorithm, named PBSC-A, works with a strongly aligned posterior Q. The second algorithm,
named PBSC-N, works with a non-aligned posterior Q.

3.1 PBSC-A: The aligned case

As seen in Section 2.1 of the paper, the strongly aligned posterior Q is totally defined by a vector w
def
=

(w0, w1, . . . , wm) . For Q to remain a valid distribution, each component of the vector w must remain in the

interval
[
− 1

m+1 ,+
1

m+1

]
.

Theorem 5 suggests to minimize the bound on ζQD given by the following expression:

ζQD ≤ ζQS +
ζ(1)√

1
2 (m− l deg ζ)

√
4 l deg ζ + ln

2
√
m

δ
.

To do so, we only need to minimize the empirical risk ζQS because the last term of the right hand side is

constant. The empirical risk, ζQS , is given by

ζQS =
1

mq2

m∑

j=1

(
q − yj

[
w0 +

m∑

i=1

wik(xi, xj)

])2

.

Lets define a matrix G of size m+ 1×m as

Gi,j =

{
1 for i = 0,
k(xi, xj) for 1 ≤ i, j ≤ m .

With this notation, the optimization problem of PBSC-A can be written as

Minimize: fA(w) =

m∑

j=1

(
q − yj

m∑

i=0

wiGi,j

)2

subject to: |wi| ≤ 1
m+1 for i = 0, 1, . . . ,m .

We propose to solve this optimization problem by minimizing fA coordinate-wise, similarly as it is done
for AdaBoost (Schapire et al. (1998)), with the difference that we will have to ensure that Q remains an
aligned distribution at each step of the algorithm. Starting from the uniform distribution P (i.e., w = 0 ),
the learning algorithm iteratively chooses (at random) k ∈ {0, . . . ,m}, and updates wk ← wk + δ (without
updating the other weights) according to some optimally chosen value of δ. Let wδ be the new weight vector
obtained with such an update. After an update, the objective function becomes:

fA(wδ) =

m∑

j=1

[
q − yj

(
m∑

i=0

wiGi,j + δGk,j

)]2
.
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The optimal value for δ is obtained when dfA(wδ)
dδ

= 0, provided that wk + δ ∈ [ −1
m+1 ,

1
m+1 ] . The derivative

of fA with respect to the δ is given by

∂fA(wδ)

∂δ
=

m∑

j=1

2

(
q − yj

m∑

i=0

wiGi,j − yjδGk,j

)
(−yjGk,j)

= 2

m∑

j=1

[
δG2

k,j + yjGk,j

(
yj

m∑

i=0

wiGi,j − q

)]

= 2


δ

m∑

j=1

G2
k,j +

m∑

j=1

Gk,j

(
m∑

i=0

wiGi,j − qyj

)


= 2


δ

m∑

j=1

G2
k,j +

m∑

j=1

Gk,jDw(j)


 ,(32)

where Dw(j)
def
=

m∑

i=0

wiGi,j − qyj .

Equation (32) implies that the optimal value for δ is given by

δ = −
∑m

j=1 Gk,j Dw(j)
∑m

j=1G
2
k,j

.(33)

Algorithm 1 presents the complete optimization procedure that we have used.

Algorithm 1 : PBSC-A optimization procedure

1: Initialize: wi=0 ∀i ∈ {0, . . . ,m} and Dw(j) = − q yj ∀j ∈ {1, . . . ,m} .
2: repeat

3: Choose at random k ∈ {0, ..,m}.
4: Compute δ given by Equation (33) .

5: If [wk + δ > 1
m+1 ] then δ ← 1

m+1 − wk.

6: If [wk + δ < −1
m+1 ] then δ ← −1

m+1 − wk.

7: wk ← wk + δ.

8: Update Dw(j) ← Dw(j) + δ Gk,j ∀j ∈ {1, . . . ,m}.
9: until Convergence

3.2 PBSC-N: The non-aligned case

We consider the non-aligned scenario where the posterior Q is defined by a vector v
def
= (v+, v1, . . . , v2m, v−):

Q(h
(ε,+)
S〈〉

) = v+, Q(h
(σ,+)
S〈i〉

) = vi
1

|M1|I(σ ∈M1),

Q(h
(ε,−)
S〈〉

) = v−, Q(h
(σ,−)
S〈i〉

) = vm+i
1

|M1|I(σ ∈M1),

under the constraints v ≥ 0 for all v ∈ v and
∑

v∈v v = 1.

9



Lets compute the Kullback-Leibler divergence KL(Q‖P ) between this posterior Q and the uniform prior P .
We find that

KL(Q‖P ) = E
h∼Q

ln Q(h)
P (h)

=

m∑

i=1

∑

s∈{−,+}

∫

M1

dσQ(h
(σ,s)
S〈i〉

) ln



Q(h

(σ,s)
S〈i〉

)

P (h
(σ,s)
S〈i〉

)


+

∑

s∈{−,+}

Q(h
(ε,s)
S〈〉

) ln



Q(h

(ε,s)
S〈〉

)

P (h
(ε,s)
S〈〉

)




=

2m∑

i=1

∫

M1

dσ
vi
|M1| ln

[
vi

|M1|

1
2|M1|(m+1)

]
+ v+ ln

v+
1

2(m+1)

+ v− ln
v−
1

2(m+1)

=
∑

v∈v

v ln

[
v
1

2(m+1)

]

= ln(2m+ 2) +
∑

v∈v

v ln [v] .

Moreover, we show in the main paper that the empirical risk ζQS is given by

ζQS =
1

mq2

m∑

j=1

(
q − yj

[
v+ − v− +

m∑

i=1

(vi − vi+m)k(xi, xj)

])2

.

Minimizing the bound of Theorem 1 amounts at finding v that minimizes

C · ζQS +KL(Q‖P ) ,

for some constant C > 0. However, in Theorem 1, we have C = m·C1

2 ζ′(1) .

Let v0
def
= v+ and v2m+1

def
= v−. Let us define a matrix G of size 2m+ 2×m as

Gi,j =





1 if i = 0,
k(xi,xj) if 1 ≤ i, j ≤ m,
−k(xi−m,xj) if m+ 1 ≤ i ≤ 2m (and 1 ≤ j ≤ m),
−1 if i = 2m+ 1 .

With this notation, the optimization problem for PBSC-N can be written as

Minimize: fN (v) =
C

mq2

m∑

j=1

(
q − yj

2m+1∑

i=0

viGi,j

)2

+

2m+1∑

i=0

vi ln vi

subject to: vi ≥ 0 for i = 0, 1, . . . , 2m+ 1 ,
2m+1∑

i=0

vi = 1 .

We propose to solve this optimization problem by minimizing fN with a coordinate-pair descent algorithm
that works iteratively by exchanging weights between two components of v. Starting from the uniform
distribution P (i.e., vi = 1

2m+2 for i = 0, 1, . . . , 2m + 1), the learning algorithm iteratively chooses (at
random) k, l ∈ {0, . . . , 2m + 1} (with k 6= l), and updates vk ← vk + δ and vl ← vl − δ (without updating
the other weights) according to some optimally chosen value of δ. Let vδ be the new weight vector obtained

10



with such an update. After an update, the objective function becomes

fN (vδ) =
C

mq2

m∑

j=1

[
q − yj

(
2m+1∑

i=0

viGi,j + δGk,j − δGl,j

)]2

+
2m+1∑

i=0

I(i /∈ {k, l}) · vi ln vi + (vk + δ) ln(vk + δ) + (vl − δ) ln(vl − δ)

The optimal value for δ is obtained when dfN (vδ)
dδ

= 0, provided that vk+δ ∈ [0, vk+vl] and vl−δ ∈ [0, vk+vl].
The derivative of fN with respect to the δ is given by

∂fN (vδ)

∂δ
=

C

mq2

m∑

j=1

2

(
q − yj

2m+1∑

i=0

viGi,j − yjδ (Gk,j −Gl,j)

)
(−yj (Gk,j −Gl,j)) + ln

vk + δ

vl − δ

=
2C

mq2

m∑

j=1

[
δ (Gk,j −Gl,j)

2
+ yj (Gk,j −Gl,j)

(
yj

2m+1∑

i=0

viGi,j − q

)]
+ ln

vk + δ

vl − δ

=
2C

mq2


δ

m∑

j=1

(Gk,j −Gl,j)
2
+

m∑

j=1

(Gk,j −Gl,j)

(
2m+1∑

i=0

viGi,j − qyj

)
+ ln

vk + δ

vl − δ

=
2C

mq2


δ

m∑

j=1

(Gk,j −Gl,j)
2
+

m∑

j=1

(Gk,j −Gl,j)Dv(j)


+ ln

vk + δ

vl − δ
,(34)

where Dv(j) =
2m+1∑

i=0

viGi,j − qyj .

We find the optimal value for δ with the help of a root finding method. Algorithm 2 presents the complete
optimization procedure that we have used.

Algorithm 2 : PBSC-N optimization procedure

1: Initialize: vi =
1

2m+2 ∀i ∈ {0, . . . ,m} and Dv(j) = − q yj ∀j ∈ {1, . . . ,m} .
2: repeat

3: Choose at random k, l ∈ {0, . . . , 2m+ 1} (with k 6= l).

4: Find δ given by the root of Equation (34).

5: If δ > vl then δ ← vl.

6: If δ < −vk then δ ← −vk.
7: vk ← vk + δ and vl ← vl − δ.

8: Update Dv(j) ← Dv(j) + δ (Gk,j −Gl,j) ∀j ∈ {1, . . . ,m}.
9: until Convergence

11



4 Empirical Results

As mentioned in Section 2.4 of the main paper, this section presents all the empirical results that we have

obtained in our experiments.

Table 1 of the main paper only presents the results for a subset of the data. Due to a lack of space, we have

removed from Table 1 of the main paper the data sets having the smallest number of examples because they

were less likely to show significative differences between the different algorithms. Here is the complete table

of the results of our experiments.

Table 1: Empirical risk measured on the testing set T for the five different algorithms.

Dataset Rbf kernel Sigmoid kernel

Name |T | |S| SVM RLSC PBSC-A PBSC-N LINEAR SVM PBSC-A

Adult 10000 1809 0.158 0.157 0.156 0.160 0.193 0.163 0.157

BreastC 340 343 0.038 0.038 0.044 0.038 0.144 0.038 0.038

Credit-A 300 353 0.190 0.160 0.140 0.173 0.200 0.190 0.170

Glass 107 107 0.150 0.150 0.150 0.168 0.187 0.355 0.411

Haberman 150 144 0.267 0.327 0.280 0.267 0.267 0.273 0.273

Heart 147 150 0.197 0.211 0.204 0.218 0.238 0.184 0.197

Ionosphere 175 176 0.057 0.023 0.040 0.040 0.326 0.126 0.091

Letter:AB 1055 500 0.001 0.002 0.001 0.001 0.038 0.009 0.005

Letter:DO 1058 500 0.014 0.015 0.011 0.012 0.069 0.022 0.028

Letter:OQ 1036 500 0.016 0.011 0.016 0.014 0.123 0.018 0.039

Liver 175 170 0.286 0.291 0.280 0.286 0.349 0.400 0.400

Mnist:0vs8 1916 500 0.003 0.009 0.004 0.004 0.031 0.007 0.003

Mnist:1vs7 1922 500 0.014 0.008 0.008 0.007 0.161 0.012 0.007

Mnist:1vs8 1936 500 0.011 0.010 0.010 0.011 0.292 0.014 0.015

Mnist:2vs3 1905 500 0.020 0.022 0.019 0.020 0.114 0.025 0.031

Mushroom 4062 4062 0.000 0.000 0.000 0.000 0.022 0.000 0.010

Ringnorm 3700 3700 0.015 0.017 0.013 0.013 0.103 0.020 0.035

sonar 104 104 0.154 0.250 0.125 0.192 0.490 0.250 0.183

Tic-tac-toe 479 479 0.015 0.019 0.019 0.052 0.365 0.023 0.159

Usvotes 200 235 0.075 0.065 0.065 0.065 0.140 0.070 0.065

Waveform 4000 4000 0.068 0.067 0.068 0.066 0.143 0.067 0.067

Wdbc 284 285 0.042 0.067 0.049 0.074 0.180 0.366 0.366

Note that Table 2 below is exactly the same as in the main paper.

Table 2: Mean and standard deviation (in parentheses) of the empirical risk across 20 partitions.

Dataset Linear SVM k-NN PBSC-A

Aural Sonar 0.1425 (0.694) 0.1825 (0.597) 0.1500 (0.827)

Voting 0.0534 (0.193) 0.0546 (0.174) 0.0529 (0.184)

Yeast-5-7 0.2688 (0.622) 0.3063 (0.580) 0.2975 (0.668)

Yeast-5-12 0.1075 (0.482) 0.1275 (0.439) 0.1088 (0.598)
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5 Another PAC-Bayes bound without KL(Q‖P )

(not stated in main the paper)

The following theorem can be viewed as a generalization of PAC-Bayes bound of Seeger (2002) to our setting.
As for Theorem 5, the following version is free of any Kullback-Leibler divergence. This bound is tighter
than the one in Theorem 5. We have, nevertheless, decided to state Theorem 5 in the main paper because it
has a simpler statement and because we have l deg ζ = 2 for the proposed learning algorithms—a case where
the bound of Theorem 5 is already quite tight.

Theorem 2. For any D, for any family (HS)S∈Dm of sets of sc-classifiers of size at most l, for any prior

P, for any margin loss function ζ such that l · deg(ζ) < m, and for for any δ ∈ (0, 1], we have

Pr
S∼Dm



∀Q aligned on P :

kl+
(

m
m−l·deg ζ

[
1
2

(
1 + 1

ζ(1) ζQS

)
+ ld

m

] ∥∥∥∥
1
2

[
1 + 1

ζ(1) ζQD

])
≤ ln 2

√
m

δ

m−l·deg ζ


 ≥ 1− δ

where kl(q‖p) def

= q ln q
p
+(1−q) ln 1−q

1−p
, and where kl+(q‖p) = kl(q‖p) if q ≥ p and 0 otherwise. Moreover,

if l = 0, kl+(, ) can be replaced by kl(, ) in the above statement—thus giving rise to both a lower and an upper

bound for ζQD .

Proof. The first part of the proof is very similar to the one of Theorem 5. We thus use here the same

definitions for d, h̄ = h1..hk (with k∈{0, .., d}), RD(h̄), RS(h̄), HS , P , Q, ζQD , and ζQS . However, we will

instead consider the following (and quite different) Laplace transform

XP

def
= E

h̄∼P

e(m−|ih̄|)kl(R̃S(h̄),RD(h̄)) ,(35)

where R̃S(h̄) is the abstract empirical risk computed on the examples of S that are not in the compression

sequence of h̄. More formally,

R̃S(h1..hk )
def
=

1

m− |ih1..hk
|

m∑

j=1

I
(
¬⊻k

i=1
(hi(xj) 6=yj)

)
I
(
(xj , yj) 6∈ ih1..hk

)
.

As in the proof of Theorem 5, we can show the following claim.

Claim : for any posterior Q aligned on P , we have

XP = E
h̄∼Q

e(m−|ih̄|)kl(R̃S(h̄),RD(h̄)).(36)

Now again, as in the proof of Theorem 5, by Markov’s inequality, we have

Pr
S∼Dm

(
XP ≤

1

δ
E

S∼Dm
XP

)
≥ 1− δ .

Thus, by applying the claim and by taking the logarithm on each side of the innermost inequality, we obtain

(37) Pr
S∼Dm




∀Qaligned on P :

ln

[
E

h̄∼Q

e(m−|ih̄|)kl(R̃S(h̄)‖RD(h̄))

]
≤ ln

[
1
δ

E
S∼Dm

E
h̄∼P

e(m−|ih̄|)kl(R̃S(h̄)‖RD(h̄))

]

 ≥ 1− δ .
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Jensen’s inequality applied to the concave ln(x) gives

(38) ln

[
E

h̄∼Q

e(m−|ih̄|)kl(R̃S(h̄)‖RD(h̄))

]
≥ E

h̄∼Q

(m− |ih̄|) kl(R̃S(h̄)‖RD(h̄) .

Again from the Jensen’s inequality, applied to the convex function kl(· ‖ ·), together with the definitions of

ζQD and ζQS (see Equation (26)) and the fact that m− |ih̄| ≥ m− l · d , we obtain

E
h̄∼Q

(m− |ih̄|) kl
(
R̃S(h̄) ‖ RD(h̄)

)
≥ (m− ld) kl

(
E

h̄∼Q

R̃S(h̄) ‖ E
h̄∼Q

RD(h̄)

)
(39)

Let us now analyse the value of ES∼DmXP . Let i
c be the vector of indices of I that are not in the vector i,

and note that

E
S∼Dm

E
h̄∼P

e(m−|ih̄|) kl(R̃S(h̄),RD(h̄)) = E
i∼PI

E
Si∼D|i|

E
µ∼P

S
i

E
Sic∼Dm−|i|

e|i
c| kl(R̃S(hµ

i
),RD(hµ

i
)) .

Since R̃S(h
µ
i ) is an arithmetic mean of iid random variables, one can apply Lemma 0 with M(X) replaced

by R̃S(h
µ
i ), n replaced by m− |i|, and ν replaced by RD(hµ

i ) to obtain

(40) ES ic ∼Dm−|i| e(m−|i|) kl(R̃S(hµ
i
),RD(hµ

i
)) ≤ 2

√
m− |i| ≤ 2

√
m.

By rearranging Equation (37), and by using Equations (40), (38) and (39), we have

E
S∼Dm

(m− ld) kl

(
E

h̄∼Q

R̃S(h̄) ‖ E
h̄∼Q

RD(h̄)

)
≤ ln

2
√
m

δ
.(41)

Finally, observe that for any classifier h̄ ∈ HS , we have

R̃S(h̄) ≤
(
RS(h̄) +

ld

m

)
m

m− |i|

≤
(
RS(h̄) +

ld

m

)
m

m− ld
.(42)

Consider the following two cases.

case 1 : l = 0. In that case we have E
h̄∼Q

R̃S(h̄) = E
h̄∼Q

RS(h̄). Hence we have

kl

(
E

h̄∼Q

R̃S(h̄) ‖ E
h̄∼Q

RD(h̄)

)
= kl

(
m

m− ld
E

h̄∼Q

RS(h̄) +
ld

m
‖ E

h̄∼Q

RD(h̄)

)

case 2 : l > 0. In that case, following Equation (??), we can show that

kl

(
E

h̄∼Q

R̃S(h̄) ‖ E
h̄∼Q

RD(h̄)

)
≥ kl+

(
m

m− ld
E

h̄∼Q

RS(h̄) +
ld

m
‖ E

h̄∼Q

RD(h̄)

)

In each case, the result then follows from Equation (26), Equation (41) and straightforward calculations.
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