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Classification Setting and PAC-Bayesian Basics

Training set: We draw m examples i.i.d. from a distribution D on X×Y:

S = {(x1, y1), (x2, y2), . . . , (xm, ym)} ∼ Dm .

Learner: Learn a classifier h : X → Y that has a low generalization risk on D:

RD(h)
def
= E

(x,y)∼D
I
[
h(x) 6= y

]
,where I(a) = 1 if a is true and 0 otherwise.

PAC-Bayesian learning: Given a set H of voters X → {−1, 1} and a training set S, we consider

1. The prior distribution P on H encodes prior knowledge. 2. The posterior distribution Q on H is obtained by learning from S.

PAC-Bayesian theory traditionally bounds the Gibbs risk RD(GQ)
def
= E

h∼Q
RD(h) using its empirical value RS(GQ)

def
= E

h∼Q
RS(h) and a the Kullback-Leibler

divergence between Q and P . General PAC-Bayesian theorems are tools to derive various PAC-Bayesian bounds using any convex function ∆ : [0, 1]× [0, 1]→ R .

Classical PAC-Bayesian Theory
The Kullback-Leibler divergence between distributions Q and P is given by

KL(Q‖P )
def
= E

h∼Q
ln
Q(h)

P (h)
.

Lemma 3 (Kullback-Leibler change of measure) For any set H, for any distribu-
tions P and Q on H, and for any measurable function φ : H → R, we have

E
h∼Q

φ(h) ≤ KL(Q‖P ) + ln

(
E
h∼P

eφ(h)

)
.

Theorem 4 For any distribution D, for any set H of voters X → {−1, 1}, for any
prior P on H, for any δ ∈ (0, 1], for any m′ > 0, and for any convex function ∆,
with probability at least 1−δ over the choice of S ∼ Dm, we have

∀Q on H : ∆
(
RS(GQ), RD(GQ)

)
≤ 1

m′

[
KL(Q‖P ) + ln

IK∆ (m,m′)

δ

]
,

where

IK∆ (m,m′)
def
= sup

r∈[0,1]

[
m∑
k=0

Binmk
(
r
)
em
′∆( km , r)

]
, Binmk

(
r
) def

=
(
m
k

)(
r
)k(

1−r
)m−k

.

Two commons ∆ are ∆KL(q, p)
def
= q ln q

p + (1− q) ln 1−q
1−p ≥ ∆V 2(q, p)

def
= 2(q−p)2:

Corollary 6 (Seeger, 2002; McAllester, 2003) With probability at least 1−δ,

∀Q on H : a) ∆KL

(
RS(GQ), RD(GQ)

)
≤ 1

m

[
KL(Q‖P ) + ln 2

√
m
δ

]
,

b)RD(GQ) ≤ RS(GQ) +

√
1

2m

[
KL(Q‖P ) + ln 2

√
m
δ

]
.

Rényi PAC-Bayesian Theory
For any α > 1, the Rényi divergence between distributions Q and P is given by

Dα(Q‖P )
def
=

1

α− 1
ln

[
E
h∼P

(
Q(h)

P (h)

)α]
.

Dα(Q‖P ) = KL(Q‖P )

when α→ 1.

Theorem 8 (Rényi change of measure) For any set H, for any distributions P
and Q on H, for any α > 1, and for any measurable function φ : H → R, we have

α

α−1
ln E
h∼Q

φ(h) ≤ Dα(Q‖P ) + ln

(
E
h∼P

φ(h)
α
α−1

)
.

Theorem 9 For any distribution D, for any set H of voters X → {−1, 1}, for any
prior P on H, for any δ∈(0, 1], for any α > 1, and for any convex function ∆, with
probability at least 1−δ over the choice of S ∼ Dm, we have

∀Q on H : ln ∆
(
RS(GQ), RD(GQ)

)
≤ 1

α′

[
Dα(Q‖P )+ ln

IR
∆(m,α′)

δ

]
,

where α′ = α
α−1 , IR

∆(m,α′)
def
= supr∈[0,1]

[
m∑
k=0

Binmk
(
r
)

∆( km , r)
α′
]
.

By choosing α = 2, and ∆(q, p) = p− q, we obtain as a special case:

Corollary 10 (≈Honorio and Jaakkola, 2014) With probability at least 1−δ,

∀Q on H : RD(GQ) ≤ RS(GQ) +

√
χ2(Q‖P ) + 1

4mδ
,

where χ2(Q‖P )
def
= E

h∼P

[ (
Q(h)
P (h)

)2

− 1
]

is the chi-squared divergence.

Streamlined and Customizable PAC-Bayesian Proofs

KL-divergence Rényi divergence with α
′
= α
α−1

∆
(

E
h∼Q

RS(h), E
h∼Q

RD(h)
)

ln ∆
(

E
h∼Q

RS(h), E
h∼Q

RD(h)
)

Jensen’s inequality ≤ E
h∼Q

∆
(
RS(h), RD(h)

)
≤ ln E

h∼Q
∆
(
RS(h), RD(h)

)
Change of measure ≤

1

m′

[
KL(Q‖P )+ ln E

h∼P
e
m′∆

(
RS(h),RD(h)

)]
≤

1

α′

[
Dα(Q‖P )+ ln E

h∼P
∆
(
RS(h), RD(h)

)α′]

Markov’s inequality ≤
1−δ

1

m′

[
KL(Q‖P )+ ln

1

δ
E

S′∼Dm
E
h∼P

e
m′∆(R

S′ (h),RD(h))

]
≤

1−δ

1

α′

[
Dα(Q‖P )+ ln

1

δ
E

S′∼Dm
E
h∼P

∆
(
RS′ (h), RD(h)

)α′]

Expectations swap =
1

m′

[
KL(Q‖P )+ ln

1

δ
E
h∼P

E
S′∼Dm

e
m′∆(R

S′ (h),RD(h))

]
=

1

α′

[
Dα(Q‖P )+ ln

1

δ
E
h∼P

E
S′∼Dm

∆
(
RS′ (h), RD(h)

)α′]

Binomial law =
1

m′

[
KL(Q‖P )+ ln

1

δ
E
h∼P

m∑
k=0

Binmk
(
RD(h)

)
e
m′∆

(
k
m
,RD(h)

)]
=

1

α′

[
Dα(Q‖P )+ ln

1

δ
E
h∼P

m∑
k=0

Binmk
(
RD(h)

)
∆
(
k
m , RD(h)

)α′]

Supremum over risk ≤
1

m′

[
KL(Q‖P )+ ln

1

δ
sup

r∈[0,1]

{
m∑
k=0

Binmk
(
r
)
e
m′∆

(
k
m
, r
)}]

≤
1

α′

[
Dα(Q‖P )+ ln

1

δ
sup

r∈[0,1]

{
m∑
k=0

Binmk
(
r
)

∆

(
k

m
, r

)α′}]

Empirical Study (How the bound values are impacted by each inequality of our proof?)

Each example generated by D is a random draw among the 8124 examples of the mushroom dataset. That is, the training set S ∼ Dm contains m examples drawn with
replacement and uniform probability from the full dataset. From training set S, we learn a majority vote using AdaBoost. We compare three different kinds of voters.
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Values for each inequality computed with the three kinds of voters. The dashed
lines correspond to the traditional bounds with the Kullback-Leibler divergence.
The full lines correspond to the bounds considering the Rényi divergence.
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Alternate representation of the quantities obtained using the weak decision trees. The
blue curve corresponds to the function ∆(RD(GQ), r). Each dashed horizontal line
corresponds to the value given by the right-hand side of the bound after each inequality.


